Процессоры ARM: особенности архитектуры, отличия и перспективы. Что такое ARM-архитектура? Что значит arm

В наше время существует две самые популярные архитектуры процессоров. Это x86, которая была разработана еще 80х годах и используется в персональных компьютерах и ARM - более современная, которая позволяет сделать процессоры меньше и экономнее. Она используется в большинстве мобильных устройств или планшетов.

Обе архитектуры имеют свои плюсы и минусы, а также сферы применения, но есть и общие черты. Многие специалисты говорят, что за ARM будущее, но у нее остаются некоторые недостатки, которых нет в x86. В нашей сегодняшней статье мы рассмотрим чем архитектура arm отличается от x86. Рассмотрим принципиальные отличия ARM или x86, а также попытаемся определить что лучше.

Процессор - это основной компонент любого вычислительного устройства, будь то смартфон или компьютер. От его производительности зависит то, насколько быстро будет работать устройство и сколько оно сможет работать от батареи. Если говорить просто, то архитектура процессора - это набор инструкций, которые могут использоваться при составлении программ и реализованы на аппаратном уровне с помощью определенных сочетаний транзисторов процессора. Именно они позволяют программам взаимодействовать с аппаратным обеспечением и определяют каким образом будут передаваться данные в память и считываться оттуда.

На данный момент существуют два типа архитектур: CISC (Complex Instruction Set Computing) и RISC (Reduced Instruction Set Computing). Первая предполагает, что в процессоре будут реализованы инструкции на все случаи жизни, вторая, RISC - ставит перед разработчиками задачу создания процессора с набором минимально необходимых для работы команд. Инструкции RISC имеют меньший размер и более просты.

Архитектура x86

Архитектура процессора x86 была разработана в 1978 году и впервые появилась в процессорах компании Intel и относится к типу CISC. Ее название взято от модели первого процессора с этой архитектурой - Intel 8086. Со временем, за неимением лучшей альтернативы эту архитектуру начали поддерживать и другие производители процессоров, например, AMD. Сейчас она является стандартом для настольных компьютеров, ноутбуков, нетбуков, серверов и других подобных устройств. Но также иногда процессоры x86 применяются в планшетах, это довольно привычная практика.

Первый процессор Intel 8086 имел разрядность 16 бит, далее в 2000 годах вышел процессор 32 битной архитектуры, и еще позже появилась архитектура 64 бит. Мы подробно рассматривали в отдельной статье. За это время архитектура очень сильно развилась были добавлены новые наборы инструкций и расширения, которые позволяют очень сильно увеличить производительность работы процессора.

В x86 есть несколько существенных недостатков. Во-первых - это сложность команд, их запутанность, которая возникла из-за длинной истории развития. Во-вторых, такие процессоры потребляют слишком много энергии и из-за этого выделяют много теплоты. Инженеры x86 изначально пошли по пути получения максимальной производительности, а скорость требует ресурсов. Перед тем, как рассмотреть отличия arm x86, поговорим об архитектуре ARM.

Архитектура ARM

Эта архитектура была представлена чуть позже за x86 - в 1985 году. Она была разработана известной в Британии компанией Acorn, тогда эта архитектура называлась Arcon Risk Machine и принадлежала к типу RISC, но затем была выпущена ее улучшенная версия Advanted RISC Machine, которая сейчас и известна как ARM.

При разработке этой архитектуры инженеры ставили перед собой цель устранить все недостатки x86 и создать совершенно новую и максимально эффективную архитектуру. ARM чипы получили минимальное энергопотребление и низкую цену, но имели низкую производительность работы по сравнению с x86, поэтому изначально они не завоевали большой популярности на персональных компьютерах.

В отличие от x86, разработчики изначально пытались получить минимальные затраты на ресурсы, они имеют меньше инструкций процессора, меньше транзисторов, но и соответственно меньше всяких дополнительных возможностей. Но за последние годы производительность процессоров ARM улучшалась. Учитывая это, и низкое энергопотребление они начали очень широко применяться в мобильных устройствах, таких как планшеты и смартфоны.

Отличия ARM и x86

А теперь, когда мы рассмотрели историю развития этих архитектур и их принципиальные отличия, давайте сделаем подробное сравнение ARM и x86, по различным их характеристикам, чтобы определить что лучше и более точно понять в чем их разница.

Производство

Производство x86 vs arm отличается. Процессоры x86 производят только две компании Intel и AMD. Изначально эта была одна компания, но это совсем другая история. Право на выпуск таких процессоров есть только у этих компаний, а это значит, что и направлением развития инфраструктуры будут управлять только они.

ARM работает совсем по-другому. Компания, разрабатывающая ARM, не выпускает ничего. Они просто выдают разрешение на разработку процессоров этой архитектуры, а уже производители могут делать все, что им нужно, например, выпускать специфические чипы с нужными им модулями.

Количество инструкций

Это главные различия архитектуры arm и x86. Процессоры x86 развивались стремительно, как более мощные и производительные. Разработчики добавили большое количество инструкций процессора, причем здесь есть не просто базовый набор, а достаточно много команд, без которых можно было бы обойтись. Изначально это делалось чтобы уменьшить объем памяти занимаемый программами на диске. Также было разработано много вариантов защит и виртуализаций, оптимизаций и многое другое. Все это требует дополнительных транзисторов и энергии.

ARM более прост. Здесь намного меньше инструкций процессора, только те, которые нужны операционной системе и реально используются. Если сравнивать x86, то там используется только 30% от всех возможных инструкций. Их проще выучить, если вы решили писать программы вручную, а также для их реализации нужно меньше транзисторов.

Потребление энергии

Из предыдущего пункта выплывает еще один вывод. Чем больше транзисторов на плате, тем больше ее площадь и потребление энергии, правильно и обратное.

Процессоры x86 потребляют намного больше энергии, чем ARM. Но на потребление энергии также влияет размер самого транзистора. Например, процессор Intel i7 потребляет 47 Ватт, а любой процессор ARM для смартфонов - не более 3 Ватт. Раньше выпускались платы с размером одного элемента 80 нм, затем Intel добилась уменьшения до 22 нм, а в этом году ученые получили возможность создать плату с размером элемента 1 нанометр. Это очень сильно уменьшит энергопотребление без потерь производительности.

За последние годы потребление энергии процессорами x86 очень сильно уменьшилось, например, новые процессоры Intel Haswell могут работать дольше от батареи. Сейчас разница arm vs x86 постепенно стирается.

Тепловыделение

Количество транзисторов влияет еще на один параметр - это выделение тепла. Современные устройства не могут преобразовывать всю энергию в эффективное действие, часть ее рассеивается в виде тепла. КПД плат одинаковый, а значит чем меньше транзисторов и чем меньше их размер - тем меньше тепла будет выделять процессор. Тут уже не возникает вопрос ARM или x86 будет выделять меньше теплоты.

Производительность процессоров

ARM изначально не были заточены для максимальной производительности, это область преуспевания x86. Отчасти этому причина меньше количество транзисторов. Но в последнее время производительность ARM процессоров растет, и они уже могут полноценно использоваться в ноутбуках или на серверах.

Выводы

В этой статье мы рассмотрели чем отличается ARM от x86. Отличия довольно серьезные. Но в последнее время грань между обоими архитектурами стирается. ARM процессоры становятся более производительными и быстрыми, а x86 благодаря уменьшению размера структурного элемента платы начинают потреблять меньше энергии и выделять меньше тепла. Уже можно встретить ARM процессор на серверах и в ноутбуках, а x86 на планшетах и в смартфонах.

А как вы относитесь к этим x86 и ARM? За какой технологией будущее по вашему мнению? Напишите в комментариях! Кстати, .

На завершение видео о развитии арихтектуры ARM:

До этого в смартфонах использовалась только архитектура ARM, но сейчас Intel уже на пороге массового выпуска мобильных чипов с архитектурой x86. Что же лучше: ARM или x86?

Вступление и общие понятия.

Архитектура x86, которая сейчас используется практически во всех компьютерах, это CISC архитектура. Это означает, что такие процессоры будут иметь следующие свойства:

  • нефиксированное значение длины команды;
  • арифметические действия кодируются в одной команде;
  • небольшое число регистров, каждый из которых выполняет строго определённую функцию.

ARM же использует усовершенствованную RISC архитектуру. Главными особенностями такого подхода являются:

  • архитектура загрузки/хранения;
  • нет поддержки нелинейного (не выровненного по словам) доступа к памяти (теперь поддерживается в процессорах ARMv6 за некоторыми исключениями);
  • равномерный 16х32-битный регистровый файл;
  • фиксированная длина команд (32 бита) для упрощения декодирования за счет снижения плотности кода. Позднее режим Thumb повысил плотность кода;
  • одноцикловое исполнение.

Если попытаться выполнить программу написанную специально под набор команд одной архитектуры на другом процессоре, вы можете не получить желаемого результата.

Вычислительная мощность

Исторически архитектура x86 развивалась с расчетом на увеличение мощности. Каждое новое поколение процессоров становилось значительно мощнее, что привело к быстрому росту вычислительной техники. Росла частота, уменьшался технологический процесс, улучшалась структура самого процессора.

Долгое время энергоэффективность оставалась второстепенным фактором, в то время как мощности уделялось основное внимание. Перелом произошел не так давно, с момента популяризации ноутбуков.

Портативные машины должны были иметь продолжительное время работы.

Архитектура ARM наоборот использовалась изначально в портативных устройствах, что дало ей низкое энергопотребление и низкий уровень мощности. Рывок в развитии произошел в последние пять лет.

Современные смартфоны требуют уже достаточно большого уровня вычислений, при этом также должны работать достаточное время от аккумулятора.

Если сравнивать показатели энергоэффективности, то процессоры ARM имеют показатель в 2 TDP (величина, показывающая, на отвод какой тепловой мощности должна быть рассчитана система охлаждения процессора или другого полупроводникового прибора. К примеру, если система охлаждения процессора рассчитана на TDP 30 Вт, она должна быть в состоянии отвести 30 Вт тепла при некоторых заданных «нормальных условиях».), а самые эффективные процессоры Atom около 5 TDP. Это означает, что самые малотребовательные процессоры Intel все равно требуют в два раза больше энергии чем конкуренты ARM.

Если говорить о производительности, то тут x86 явно впереди ARM. Даже если посмотреть на , то можно увидеть, что одноядерный x86 быстрее двухъядерных ARM. Также стоит учитывать, что это первая модель процессора Intel в инженерном образце. Далее мощность будет только расти.

Популярность и лицензирование

Intel очень ревниво относится к своей архитектуре x86, поэтому кроме нее самой и AMD никто не может производить x86 процессоры.
С ARM ситуация другая. Каждый желающий может купить лицензию и создавать свои собственные процессоры, как это делает Qualcomm, Samsung, Apple, NVIDIA и другие компании. Сейчас у AMD нет планов по выпуску мобильных процессоров, поэтому Intel станет монополистом x86 процессоров для смартфонов и планшетов, что не очень хорошо для развития архитектуры. На рынке ARM идет серьезная борьба, что приводит к улучшению продукции всех производителей.

С другой стороны, бренд Intel имеет лучшую узнаваемость чем Qualcomm, Cortex и т.д. Поэтому покупатель придя в магазин и увидев надпись “Intel inside”, возможно предпочтет это устройство конкурентам.

Заключение

В заключении обычно объявляют победителя, но не в этом случае. Я считаю, что архитектуры x86 и ARM не совсем корректно сравнивать. Каждая хороша в чем-то своем. В будущем пользователь будет выбирать не только между мобильной ОС, производителем и качеством отдельно взятых компонентов, но и между архитектурой процессоров. Для разных целей подойдут разные архитектуры и это надо учитывать. Хотя пока нет тестов Intel Medfield по сроку службы батареи, но ARM будет в этом тесте впереди. В то же время по чистой мощности ARM не догонит x86.

Еще совсем недавно (всего 10 лет назад) на рынке пользовательских процессоров было три архитектуры, и все они были более-менее неплохо разделены: ARM-процессоры ставились в мобильные устройства, где важно было время автономной работы, x86-процессоры ставились в устройства под управлением Windows, ну и в пику Intel Apple использовала в своих устройствах процессоры на архитектуре PowerPC (хотя мы знаем, что она все же «переползла» на x86). Но на сегодняшний момент на рынке пользовательских процессоров осталось всего две архитектуры - PowerPC выбыл из гонки, причем совсем недавно: последнее устройство на этой архитектуре, PlayStation 3, перестали производить всего пару недель назад. Более того - все больше утечек о том, что на ARM-процессорах можно будет запускать полноценную Windows, и с другой стороны - тот же Android отлично работает с х86-процессорами начиная с версии 4.0. То есть, как мы видим, разница между этими архитектурами все больше размывается в глазах пользователей, и в этой статье мы и выясним, почему так происходит.

Архитектура х86

Для начала определимся с тем, что же такое архитектура. Говоря простым языком, с точки зрения программиста архитектура процессора - это его совместимость с определенным набором команд, которые могут использоваться при написании программ и реализуются на аппаратном уровне с помощью различных сочетаний транзисторов процессора.


Процессоры х86 построены на архитектуре CISC (Complex Instruction Set Computing, процессоры с полным набором инструкций) - это означает, что в процессоре реализовано максимальное число инструкций, что, с одной стороны, упрощает написание программ и уменьшает их вес, и другной стороны - процессор практически невозможно нагрузить на 100%.

Первым процессором на архитектуре х86 был Intel 8086 - это первый 16-битный процессор от Intel, работающий на частоте до 10 МГц и выпущенный в 1978 году. Процессор оказался крайне популярным и производился до 1990 года, а все последующие процессоры стали с делать с ним совместимые. Сначала эта совместимость показывалась в виде окончания названия процессора на 86, ну а в дальнейшем, с выходом Pentium, архитектуру решили назвать х86.

В 1985 году вышел процессор i386, который стал первым 32-битный процессором от Intel, а к 1989 году Intel выпустила первый скалярный процессор i486 - этот процессор умел выполнять одну операцию за такт. В дальнейшем, с выходом Pentium в 1993 году, процессоры от Intel стали суперскалярными, то есть научились делать несколько операций за один такт, и суперконвейерными - то есть имели два вычислительных конвейера. Но это было еще не все - по сути все процессоры Intel, начиная с i486DX, являются CISC-процессорами с RISC-ядром (Reduced Instruction Set Computer, процессоры с сокращённым набором инструкций): в микропроцессор встраивается аппаратный транслятор, который непосредственно перед исполнением преобразуют CISC-инструкции процессоров x86 в более простой набор внутренних инструкций RISC, при этом одна команда x86 может порождать несколько RISC-команд.

С тех пор особо ничего не поменялось - да, росло число конвейеров, росло число операций за такт, процессоры стали многоядерными и 64-битными, но до сих пор все решения от Intel и AMD являются суперконвейерными суперскалярными микропроцессорами, построенными на основе CISC-архитектуры с RISC-ядром.

Архитектура ARM

Архитектура ARM появилась позже x86, в 1986 году с выходом процессора ARM2. Цель ее разработки была в максимальной оптимизации и уменьшения числа транзисторов - к примеру, под нагрузкой x86-процессор тогда использовал едва ли 30% от числа всех транзисторов, все другие банально простаивали. Поэтому ARM разработали собственный чип на RISC-архитектуре, который назвали ARM2 - он имел всего 30000 транзисторов (сравните с 275 тысячами транзисторов в актуальном тогда i386), и не имел как кэша (что в общем-то тогда было нормой для процессоров - кэш можно было докупить и поставить отдельно), но и микропрограммы как таковой - микрокод исполнялся как и любой другой машинный код, путём преобразования в простые инструкции:


В итоге из-за того, что число транзисторов в ARM-процессорах ощутимо меньше, чем в х86, мы и получаем, что их тепловыделение тоже ощутимо ниже. Но, с другой стороны, из-за упрощенной архитектуры и производительность у ARM тоже ощутимо ниже, чем у x86.

В дальнейшем к ARM так же прикрутили поддержку и суперскалярности, и суперконвеерности, процессоры стали многоядерными и несколько лет назад стали 64-битными. В итоге современные решения от ARM являются суперконвейерными суперскалярными микропроцессорами, построенными на основе RISC-архитектуры.

Итоги

В результате мы видим две крайности: x86 являются мощными решениями, обвешанными инструкциями, которые могут выполнять абсолютно любые задачи с хорошей скоростью. Но за это приходится платить увеличенным тепловыделением. ARM же - простые процессоры, у которых набор инструкций ощутимо меньше, поэтому выполнение многих серьезных задач на них не имеет особого смысла из-за медлительности процесса. Но при этом и тепловыделение низкое. Однако самое основное - обе архитектуры поддерживают RISC-инструкции, а значит что на обеих архитектурах можно запускать одинаковые ОС, что мы и видим в случае с Android, Linux и Windows, и это означает, что в будущем разница между х86 и ARM будет размываться все больше.

Подавляющее большинство современных гаджетов используют процессоры на архитектуре ARM, разработкой которой занимается одноимённая компания ARM Limited. Что интересно, компания сама не производит процессоры, а только лицензирует свои технологии для сторонних производителей чипов. Помимо этого, компания также разрабатывает процессорные ядра Cortex и графические ускорители Mali, которых мы обязательно коснёмся в этом материале.

ARM Limited

Компания ARM, фактически, является монополистом в своей области, и подавляющее большинство современных смартфонов и планшетов на различных мобильных операционных системах используют процессоры именно на архитектуре ARM. Производители чипов лицензируют у ARM отдельные ядра, наборы инструкций и сопутствующие технологии, причём стоимость лицензий значительно разнится в зависимости от типа процессорных ядер (это могут быть как маломощные бюджетные решения, так и ультрасовременные четырёхъядерные и даже восьмиядерные чипы) и дополнительных компонентов. Годовой отчёт о прибыли ARM Limited за 2006 год показал выручку в 161 миллион долларов за лицензирование около 2,5 миллиардов процессоров (в 2011 году этот показатель составил уже 7,9 млрд), что означает примерно 0,067 долларов за один чип. Впрочем, по озвученной выше причине, это очень усреднённый показатель из-за разницы в ценах на различные лицензии, и с тех пор прибыль компании должна была вырасти многократно.

В настоящее время ARM-процессоры имеют очень широкое распространение. Чипы на этой архитектуре используются повсюду, вплоть до серверов, но чаще всего ARM можно встретить во встраиваемых и мобильных системах, начиная с контроллеров для жёстких дисков и заканчивая современными смартфонами, планшетами и прочими гаджетами.

Ядра Cortex

ARM разрабатывает несколько семейств ядер, которые используются для различных задач. К примеру, процессоры, основанные на Cortex-Mx и Cortex-Rx (где “х” — цифра или число, обозначающее точный номер ядра) используются во встраиваемых системах и даже бытовых устройствах, к примеру, роутерах или принтерах.

Подробно на них мы останавливаться не будем, ведь нас, в первую очередь, интересует семейство Cortex-Ax — чипы с такими ядрами используются в наиболее производительных устройствах, в том числе смартфонах, планшетах и игровых консолях. ARM постоянно работает над новыми ядрами из линейки Cortex-Ax, но на момент написания этой статьи в смартфонах используются следующие из них:

Чем больше цифра — тем выше производительность процессора и, соответственно, дороже класс устройств, в которых он используется. Впрочем, стоит отметить, что это правило соблюдается не всегда: к примеру, чипы на ядрах Cortex-A7 имеют большую производительность, нежели на Cortex-A8. Тем не менее, если процессоры на Cortex-A5 уже считаются чуть ли не устаревшими и почти не используются в современных устройствах, то CPU на Cortex-A15 можно найти во флагманских коммуникаторах и планшетах. Не так давно ARM официально объявила о разработке новых, более мощных и, одновременно, энергоэффективных ядер Cortex-A53 и Cortex-A57, которые будут объединены на одном чипе с применением технологии ARM big.LITTLE и поддерживать набор команд ARMv8 (“версию архитектуры”), но в настоящее время они не применяются в массовых потребительских устройствах. Большинство чипов с ядрами Cortex могут быть многоядерными, и в современных топовых смартфонах повсеместное распространение получили четырёхъядерные процессоры.

Крупные производители смартфонов и планшетов обычно используют процессоры известных чипмейкеров вроде Qualcomm или собственные решения, которые уже успели стать довольно популярными (к примеру, Samsung и её семейство чипсетов Exynos), но среди технических характеристик гаджетов большинства небольших компаний зачастую можно встретить описание вроде “процессор на Cortex-A7 с тактовой частотой 1 ГГц” или “двухъядерный Cortex-A7 с частотой 1 ГГц”, которое обычному пользователю ничего не скажет. Для того, чтобы разобраться, в чём заключаются отличия таких ядер между собой, остановимся на основных.

Ядро Cortex-A5 используются в недорогих процессорах для наиболее бюджетных устройств. Такие устройства предназначены только для выполнения ограниченного круга задач и запуска простых приложений, но совершенно не рассчитаны на ресурсоёмкие программы и, тем более, игры. В качестве примера гаджета с процессором на Cortex-A5 можно назвать Highscreen Blast, который получил чип Qualcomm Snapdragon S4 Play MSM8225, содержащий два ядра Cortex-A5 с тактовой частотой 1,2 ГГц.

Процессоры на Cortex-A7 являются более мощными, чем чипы Cortex-A5, а кроме того, больше распространены. Такие чипы выполняются по 28-нанометровому техпроцессу и имеют большой кэш второго уровня до 4 мегабайт. Ядра Cortex-A7 встречаются, преимущественно, в бюджетных смартфонах и недорогих устройствах среднего сегмента вроде iconBIT Mercury Quad, а также, в качестве исключения, в Samsung Galaxy S IV GT-i9500 с процессором Exynos 5 Octa — этот чипсет при выполнении нетребовательных задач использует энергосберегающий четырёхъядерный процессор на Cortex-A7.

Ядро Cortex-A8 не так распространено, как его “соседи”, Cortex-A7 и Cortex-A9, но всё же используется в различных гаджетах начального уровня. Рабочая тактовая частота чипов на Cortex-A8 может составлять от 600 МГц до 1 ГГц, но иногда производители разгоняют процессоры и до более высоких частот. Особенностью ядра Cortex-A8 является отсутствие поддержки многоядерных конфигураций (то есть, процессоры на этих ядрах могут быть только одноядерными), а выполняются они по 65-нанометровому техпроцессу, который уже считается устаревшим.

Сortex-A9

Ещё пару лет назад ядра Cortex-A9 считались топовым решением и использовались как в традиционных одноядерных, так и более мощных двухъядерных чипах, например Nvidia Tegra 2 и Texas Instruments OMAP4. В настоящее время процессоры на Cortex-A9, выполненные по 40-нанометровому техпроцессу не теряют популярность и используются во многих смартфонах среднего сегмента. Рабочая частота таких процессоров может составлять от 1 до 2 и более гигагерц, но обычно она ограничивается 1,2-1,5 ГГц.

В июне 2013 года компания ARM официально представила ядро Cortex-A12, которое выполняется по новому 28-нанометровому техпроцессу и призвано заменить ядра Cortex-A9 в смартфонах среднего сегмента. Разработчик обещает увеличение производительности на 40% по сравнению с Cortex-A9, а кроме того, ядра Cortex-A12 смогут участвовать в архитектуре ARM big.LITTLE в качестве производительных вместе с энергосберегающими Cortex-A7, что позволит производителям создавать недорогие восьмиядерные чипы. Правда,на момент написания статьи всё это только в планах, и массовое производство чипов на Cortex-A12 ещё не налажено, хотя компания RockChip уже объявила о своём намерении выпустить четырёхъядерный процессор на Cortex-A12 с частотой 1,8 ГГц.

На 2013 год ядро Cortex-A15 и его производные является топовым решением и используется в чипах флагманских коммуникаторах различных производителей. Среди новых процессоров, выполненных по 28-нм техпроцессу и основанных на Cortex-A15 — Samsung Exynos 5 Octa и Nvidia Tegra 4, а также это ядро нередко выступает платформой для модификаций других производителей. Например, последний процессор компании Apple A6X использует ядра Swift, которые являются модификацией Cortex-A15. Чипы на Cortex-A15 способны работать на частоте 1,5-2,5 ГГц, а поддержка множества стандартов сторонних компаний и возможность адресовать до 1 ТБ физической памяти делает возможным применение таких процессоров в компьютерах (как тут не вспомнить мини-компьютер размером с банковскую карту Raspberry Pi).

Cortex-A50 series

В первой половине 2013 года ARM представила новую линейку чипов, которая получила название Cortex-A50 series. Ядра этой линейки будут выполнены по новой версии архитектуры, ARMv8, и поддерживать новые наборы команд, а также станут 64-битными. Переход на новую разрядность потребует оптимизации мобильных операционных систем и приложений, но, разумеется, сохранится поддержка десятков тысяч 32-битных приложений. Первой на 64-битную архитектуру перешла компания Apple. Последние устройства компании, например, iPhone 5S, работают на именно таком ARM-процессоре Apple A7. Примечательно, что он не использует ядра Cortex – они заменены на собственные ядра производителя под названием Swift. Одна из очевидных причин необходимости перехода к 64-битным процессорам — поддержка более 4 ГБ оперативной памяти, а, кроме того, возможность оперировать при вычислении намного большими числами. Конечно, пока это актуально, в первую очередь, для серверов и ПК, но мы не удивимся, если через несколько лет на рынке появятся смартфоны и планшеты с таким объёмом ОЗУ. На сегодняшний день о планах по выпуску чипов на новой архитектуре и смартфонов с их использованием ничего не известно, но, вероятно, именно такие процессоры и получат флагманы в 2014 году, о чём уже заявила компания Samsung.

Открывает серию ядро Cortex-A53, которое будет прямым “наследником” Cortex-A9. Процессоры на Cortex-A53 заметно превосходят чипы на Cortex-A9 в производительности, но, при этом, сохраняется низкое энергопотребление. Такие процессоры могут быть использованы как по одиночке, так и в конфигурации ARM big.LITTLE, будучи объединенными на одном чипсете с процессором на Cortex-A57

Perfomance Cortex-A53, Cortex-A57

Процессоры на Cortex-A57, которые будут выполнены по 20-нанометровому техпроцессу, должны стать самыми мощными ARM-процессорами в ближайшем будущем. Новое ядро значительно превосходит своего предшественника, Cortex-A15 по различным параметрам производительности (сравнение вы можете видеть выше), и, по словам ARM, которая всерьёз нацелена на рынок ПК, станет выгодным решением для обычных компьютеров (включая лэптопы), а не только мобильных устройств.

ARM big.LITTLE

В качестве высокотехнологичного решения проблемы энергопотребления современных процессоров ARM предлагает технологию big.LITTLE, суть которой заключается в объединении на одном чипе ядер различных типов, как правило, одинакового количества энергосберегающих и высокопроизводительных.

Существует три схемы работы ядер различного типа на одном чипе: big.LITTLE (миграция между кластерами), big.LITTLE IKS (миграция между ядрами) и big.LITTLE MP (гетерогенный мультипроцессинг).

big.LITTLE (миграция между кластерами)

Первым чипсетом на архитектуре ARM big.LITTLE стал процесссор Samsung Exynos 5 Octa. В нём используется оригинальная схема big.LITTLE “4+4”, что означает объединение в два кластера (отсюда и название схемы) на одном кристалле четырёх высокопроизводительных ядер Cortex-A15 для ресурсоёмких приложений и игр и четырёх энергосберегающих ядер Cortex-A7 для повседневной работы с большинством программ, причём в один момент времени могут работать ядра только одного типа. Переключение между группами ядер происходит практически мгновенно и незаметно для пользователя в полностью автоматическом режиме.

big.LITTLE IKS (миграция между ядрами)

Более сложная реализация архитектуры big.LITTLE — объединение нескольких реальных ядер (как правило двух) в одно виртуальное, управляемое ядром операционной системы, которое решает, какие задействовать ядра — энергоэффективные или производительные. Разумеется, виртуальных ядер также несколько — на иллюстрации приведен пример схемы IKS, где в каждом из четырёх виртуальных ядер находятся по одному ядру Cortex-A7 и Cortex-A15.

big.LITTLE MP (гетерогенный мультипроцессинг)

Схема big.LITTLE MP является наиболее “продвинутой” — в ней каждое ядро является независимым и может включаться ядром ОС по необходимости. Это значит, что если используются четыре ядра Cortex-A7 и столько же ядер Cortex-A15, в чипсете, построенном на архитектуре ARM big.LITTLE MP, смогут работать одновременно все 8 ядер, даже несмотря на то, что они разных типов. Одним из первых процессоров такого типа стал восьмиядерный чип компании Mediatek — MT6592, который может работать на тактовой частоте 2 ГГц, а также записывать и воспроизводить видео в разрешении UltraHD.

Будущее

По имеющейся на данный момент информации, в ближайшее время ARM совместно с другими компаниями планирует наладить выпуск big.LITTLE чипов следующего поколения, которые будут использовать новые ядра Cortex-A53 и Cortex-A57. Кроме того, бюджетные процессоры на ARM big.LITTLE собирается выпускать китайский производитель MediaTek, которые будут работать по схеме “2+2”, то есть, использовать две группы по два ядра.

Графические ускорители Mali

Помимо процессоров, ARM также разрабатывает и графические ускорители семейства Mali. Подобно процессорам, графические ускорители характеризуются множеством параметров, например, уровнем сглаживания, интерфейсом шины, кэшем (сверхбыстрая память, используемая для повышения скорости работы) и количеством “графических ядер” (хотя, как мы писали в прошлой статье, этот показатель, несмотря на похожесть с термином, использующимся при описании CPU, практически не влияет производительность при сравнении двух GPU).

Первым графическим ускорителем ARM стал ныне неиспользуемый Mali 55, который был использован в сенсорном телефоне LG Renoir (да-да, самом обычном сотовом телефоне). GPU не использовался в играх — только для отрисовки интерфейса, и обладал примитивными по нынешним меркам характеристиками, но именно он стал “родоначальником” серии Mali.

С тех пор прогресс шагнул далеко вперёд, и сейчас немалое значение имеют поддерживаемые API и игровые стандарты. К примеру, поддержка OpenGL ES 3.0 сейчас заявлена только в самых мощных процессорах вроде Qualcomm Snapdragon 600 и 800, а, если говорить о продукции ARM, то стандарт поддерживают такие ускорители, как Mali-T604 (именно он стал первым графическим процессором ARM, выполненным на новой микроархитектуре Midgard), Mali-T624, Mali-T628, Mali-T678 и некоторые другие близкие к ним по характеристикам чипы. Тот или иной GPU, как правило, тесно связан с ядром, но, тем не менее, указывается отдельно, а, значит, если вам важно качество графики в играх, то имеет смысл посмотреть на название ускорителя в спецификациях смартфона или планшета.

Есть у ARM в линейке и графические ускорители для смартфонов среднего сегмента, наиболее распространёнными среди которых являются Mali-400 MP и Mali-450 MP, которые отличаются от своих старших братьев сравнительно небольшой производительностью и ограниченным набором API и поддерживаемых стандартов. Несмотря на это, указанные GPU продолжают использоваться в новых смартфонах, к примеру, Zopo ZP998, который получил графический ускоритель Mali-450 MP4 (улучшенную модификацию Mali-450 MP) вдобавок к восьмиядерному процессору MTK6592.

Предположительно, в конце 2014 года должны появиться смартфоны с новейшими графическими ускорителями ARM: Mali-T720, Mali-T760 и Mali-T760 MP, которые были представлены в октябре 2013 года. Mali-T720 должен стать новым GPU для недорогих смартфонов и первым графическим процессором этого сегмента с поддержкой Open GL ES 3.0. Mali-T760, в свою очередь, станет одним из наиболее мощных мобильных графических ускорителей: по заявленным характеристикам, GPU имеет 16 вычислительных ядер и обладает поистине огромной вычислительной мощностью, 326 Гфлопс, но, в то же время, в четыре раза меньшим энергопотреблением, чем упомянутый выше Mali-T604.

Роль CPU и GPU от ARM на рынке

Несмотря на то, что компания ARM является автором и разработчиком одноимённой архитектуры, которая, повторимся, сейчас используется в подавляющем большинстве мобильных процессоров, её решения в виде ядер и графических ускорителей не пользуются популярностью у крупных производителей смартфонов. К примеру, справедливо считается, что флагманские коммуникаторы на Android OS должны иметь процессор Snapdragon с ядрами Krait и графический ускоритель Adreno от Qualcomm, чипсеты этой же компании используются в смартфонах на Windows Phone, а некоторые производители гаджетов, к примеру, Apple, разрабатывают собственные ядра. Почему же в настоящее время сложилась именно такая ситуация?

Возможно, часть причин может лежать глубже, но одна из них — отсутствие чёткого позиционирования CPU и GPU от ARM среди продуктов других компаний, вследствие чего разработки компании воспринимаются как базовые компоненты для использования в устройствах B-брендов, недорогих смартфонах и создания на их основе более зрелых решений. К примеру, компания Qualcomm почти на каждой своей презентации повторяет, что одной из её главных целей при создании новых процессоров является уменьшение энергопотребления, а её ядра Krait, будучи доработанными ядрами Cortex, стабильно показывают более высокие результаты по производительности. Аналогичное утверждение справедливо и для чипсетов Nvidia, которые ориентированы на игры, ну а что касается процессоров Exynos от Samsung и A-серии от Apple, то они имеют свой рынок за счёт установки в смартфоны этих же компаний.

Вышесказанное совершенно не значит, что разработки ARM значительно хуже процессоров и ядер сторонних компаний, но конкуренция на рынке в конечном итоге идет покупателям смартфонов только на пользу. Можно сказать, что ARM предлагает некие заготовки, приобретая лицензию на которые, производители могут уже самостоятельно их доработать.

Заключение

Микропроцессоры на архитектуре ARM успешно завоевали рынок мобильных устройств благодаря низкому энергопотреблению и сравнительно большой вычислительной мощности. Раньше с ARM конкурировали другие RISC-архитектуры, например, MIPS, но сейчас у неё остался только один серьёзный конкурент — компания Intel с архитектурой x86, которая, к слову, хотя и активно борется за свою долю рынка, пока не воспринимается ни потребителями, ни большинством производителей всерьёз, особенно при фактическом отсутствии флагманов на ней (Lenovo K900 сейчас уже не может конкурировать с последними топовыми смартфонами на ARM-процессорах).

А как вы думаете, сможет ли кто-нибудь потеснить ARM, и как дальше сложится судьба этой компании и её архитектуры?

В этом материале пойдет речь о процессорной архитектуре . Полупроводниковые продукты на ее основе можно встретить в смартфонах, роутерах, планшетных ПК и прочих мобильных устройствах, где она до недавних пор занимала ведущие позиции в этом сегменте рынка. Сейчас же ее постепенно вытесняют более новые и свежие процессорные решения.

Краткая справка о компании ARM

История компании ARM началась в 1990 году, когда она была основана Робином Саксби. Основой же для ее создания стала новая микропроцессорная архитектура. Если до этого господствующие позиции на рынке ЦПУ занимала х86 или CISC , то после образования данной компании появилась достойная альтернатива в виде RISC. В первом случае выполнение программного кода сводилось к 4 этапам:

    Получение машинных инструкций.

    Выполнение преобразования микрокода.

    Получение микроинструкций.

    Поэтапное выполнение микроинструкций.

О сновная же идея архитектуры RIS С состояла в том, что обработку программного кода можно свести к 2 этапам:

    Получение RISC- инструкций.

    Обработка RISC- инструкций.

К ак в первом, так и во втором случае есть как плюсы, так и существенные недостатки. х86 успешно завоевала компьютерный рынок, а RISC ( в том числе и , представленная 2011 году) — рынок мобильных устройств.

История появления архитектуры Cortex A7. Ключевые особенности

В качестве основы для «Кортекс А7» выступала «Кортекс А8». Основная идея разработчиков в данном случае сводилась к тому, чтобы увеличить производительность и значительно улучшить энергоэффективность процессорного решения. Именно это в конечном итоге и получилось у инженеров компании ARM . Еще одной важной особенностью в данном случае стало то, что появилась возможность создавать ЦПУ с технологией big.LITTLE. То есть полупроводниковый кристалл мог включать 2 вычислительных модуля. Один из них был нацелен на решение наиболее простых задач с минимальным энергопотреблением и, как правило, в этой роли и выступали ядра «Кортекс А7». Второй же был предназначен для запуска наиболее сложного софта и базировался на вычислительных блоках «Кортекс А15» или «Кортекс А17». Официально «Кортекс А7» была представлена, как было отмечено ранее, в 2011 году. Ну а первый процессор ARM Cortex A7 увидел свет годом позже, то есть в 2012 году.

Технология производства

Изначально полупроводниковые продукты на основе А7 производились по технологическим нормам 65 нм. Сейчас эта технология безнадежно устарела. В дальнейшем были выпущены еще два поколения процессоров А7 по нормам допуска уже 40 нм и 32 нм. Но и они сейчас уже стали неактуальными. Наиболее свежие модели ЦПУ на основе этой архитектуры изготавливаются уже по нормам 28 нм, и именно их пока еще можно встретить в продаже. Дальнейший переход на более новые с новыми нормами допуска и устаревшей архитектурой ожидать вряд ли стоит. Чипы на базе А7 сейчас занимают наиболее бюджетный сегмент рынка мобильных устройств и их постепенно вытесняют уже гаджеты на основе А53, которая практически при той же энергоэффективности параметрах имеет более высокий уровень быстродействия.

Архитектура микропроцессорного ядра

1, 2, 4 или 8 ядер может входить в состав ЦПУ на базе ARM Cortex A7. Характеристики процессоров в последнем случае указывают на то, что в состав чипа входят, по существу, 2 кластера по 4 ядра. 2-3 года процессорные продукты начального уровня основывались на чипах с 1-им или 2-мя вычислительными модулями. Средний уровень занимали 4-ядерные решения. Ну а премиум-сегмент был за 8-ядерными чипами. Каждое микропроцессорное ядро на основе такой архитектуры включало следующие модули:

    Б лок обработки чисел с плавающей запятой (FPU).

    Кеш 1-го уровня.

    Блок NEON для оптимизации работы ЦПУ.

    Вычислительный модуль ARMv7.

Также были следующие общие компоненты для всех ядер в составе ЦПУ:

    Кеш L2.

    Блок управления ядрами CoreSight.

    Контроллер шины управления данными АМВА с разрядностью 128 бит.

Возможные частоты

Максимальное значение тактовой частоты для данной микропроцессорной архитектуры может изменяться от 600 МГц до 3 ГГц. Также необходимо отметить, что этот параметр, который указывает максимальное влияние на производительность вычислительной системы, изменяется. Причем на частоту оказывает влияние сразу три фактора:

    Уровень сложности решаемой задачи.

    Степень оптимизации программного обеспечения под многопоточность.

    Текущее значение температуры полупроводникового кристалла.

    В качестве примера рассмотрим алгоритм работы чипа МТ6582, который базируется на А7 и включает 4 вычислительных блока, частота которых изменяется от 600 МГц до 1,3 ГГц. В режиме простоя у этого процессорного устройства может находиться лишь только один блок вычислений, и он функционирует на минимально возможной частоте в 600 МГц. Аналогичная ситуация будет и в том случае, когда будет запущено простое приложение на мобильном гаджете. Но когда же в списке задач появиться ресурсоемкая игрушка с оптимизацией под многопоточность, то автоматически включатся в работу все 4 блока обработки программного кода на частоте 1,3 ГГц. По мере нагрева ЦПУ наиболее горячие ядра будут понижать значение частоты или даже отключаться. С одной стороны, такой подход обеспечивает энергоэффективнсть, а с другой — приемлемый уровень быстродействия чипа.

    Кеш-память

    Всего лишь 2 уровня кеша предусмотрено в ARM Cortex A7. Характеристики полупроводникового кристалла, в свою очередь, указывают на то, что первый уровень в обязательном порядке разделен на 2 равные половинки. Одна из них должна хранить данные, а другая — инструкции. Суммарный р азмер кеша на 1-ом уровне по спецификациям может быть равен 64 Кб. Как результат, получаем 32 Кб для данных и 32 Кб для кода. Кеш 2-го уровня в этом случае будет завис е ть от конкретной модели ЦПУ. Наименьший объем его может быть равен 0 Мб (то есть отсутствовать), а наибольший — 4 Мб.

    Контроллер оперативной памяти. Его особенности

    Встроенным контроллером оперативной памяти комплектуется любой процессор ARM Cortex A7. Характеристикитехнического плана указывают на то, что он ориентирован на работу в связке с ОЗУ стандарта LPDDR3. Рекомендованные частоты функционирования оперативной памяти в данном случае равны 1066 МГц или 1333 МГц. Максимальный же размер ОЗУ, который можно встретить на практике, для данной модели чипа равен 2 Гб.

    Интегрированная графика

    Как и положено, данные микропроцессорные устройства имеют интегрированную графическую подсистему. Компания-производитель ARM рекомендует использовать в сочетании с этим ЦПУ графическую карту собственной разработки Mali -400MP2 . Но ее производительности чаще всего недостаточно для того, чтобы раскрыть потенциал микропроцессорного устройства. Поэтому разработчики чипов применяют в сочетании с этим чипом более производительные адаптеры, например, Power VR6200.

    Программные особенности

    Три вида операционных систем нацелено на процессоры ARM:

      Android от поискового гиганта Google.

      iOS от APPLE.

      Windows Mobile от «Майкрософт».

    Все остальное системное программное обеспечение пока не получило большого распространения. Наибольшую долю на рынке такого софта, как не сложно догадаться, занимает именно Android. Эта система имеет простой и понятный интерфейс и устройства на ее основе начального уровня являются очень и очень доступными. До версии 4.4 включительно она была 32-битной, а с 5.0 стала поддерживать 64-разрядные вычисления. Эта ОС успешно функционирует на любом семействе ЦПУ архитектуры RISC , в том числе и ARM Cortex A7. Инженерное меню — это еще одна важная особенность данного системного софта. С ее помощью можно существенно перенастроить возможности ОС. Доступ же к этому меню можно получить с помощью кода, который для каждой модели ЦПУ индивидуален.

    Еще она важная особенность этой ОС — установка всех возможных обновлений автоматически. Поэтому даже новые возможности могут появиться на чипах семейства ARM Cortex A7. Прошивка их может добавить. Вторая система нацелена на мобильные гаджеты компании APPLE. Такие устройства в основном занимают премиум — сегмент и имеют соответствующие уровни быстродействия и стоимость. Последняя ОС в лице Windows Mobile пока не получила большого распространения. Устройства на ее основе есть в любом сегменте мобильны гаджетов, но вот малое количество прикладного софта в данном случае является сдерживающим фактором для ее распространения.

    Модели процессоров

    Наиболее доступными и наименее производительными в этом случае являются 1-ядерные чипы. Наибольшее распространение среди них получил МТ6571 от компании МедиаТек. На ступеньку выше находятся двухъядерные ЦПУ ARM Cortex A7 Dual Core. В качестве примера можно привести МТ6572 от все того же самого производителя. Еще больший уровень быстродействия обеспечивали Quad Core ARM Cortex A7. Наиболее популярным чипом из этого семейства является МТ6582, который сейчас даже можно встретить в мобильных гаджетах начального уровня. Ну а наибольший уровень быстродействия обеспечивали 8-ядерные центральные процессоры, к которым принадлежал МТ6595.

    Дальнейшие перспективы развития

    Пока еще можно встретить на прилавках магазинов мобильные устройства в основе которых лежит полупроводниковое процессорное устройство на базе 4X ARM Cortex A7. Это и МТ6580, МТ6582 и «Снапдрагон 200». Все эти чипы включают 4 вычислительных блока и имеют отменный уровень энергоэффективности. Также стоимость в этом случае очень и очень скромная. Но все же лучшие времена это микропроцессорной архитектуры уже позади. Пик продаж продукции на ее основе припал на 2013-2014 года, когда на рынке мобильных гаджетов у нее практически не было альтернативы. Причем в этом случае речь идет как о бюджетных устройствах с 1 или 2 вычислительными модулями, так и с флагманскими гаджетами с 8-ядерным ЦПУ. На текущий момент ее постепенно с рынка вытесняет «Кортекс А53», которая по существу является модифицированной 64-битной версией А7. При этом основные преимущества своей предшественницы она сохранила целиком и полностью, и будущее уж точно за ней.

    Мнение экспертов и пользователей. Реальные отзывы о чипах на базе данной архитектуры. Сильные и слабые стороны

    Безусловно, знаковым событием для мира мобильных устройств стало появление архитектуры микропроцессорных устройств ARM Cortex A7. Наилучшим доказательством этого стало то, что устройства на ее базе уже успешно продаются более 5 лет. Конечно, сейчас уже возможностей ЦПУ на основе А7 уже недостаточно даже для решения задач среднего уровня, но вот наиболее простой программный код на таких чипах и по сей день успешно функционирует. В перечень такого софта входит воспроизведение видео, прослушивание аудиозаписей, чтение книг, веб-серфинг и даже наиболее простые игрушки в этом случае запустятся без особых проблем. Именно на этом и акцентируют внимание на ведущих тематических порталах, посвященных мобильным гаджетам и девайсам как ведущие специалисты такого плана, так и обычные пользователи. Ключевой минус А7 — это отсутствие поддержки 64-битных вычислений. Ну а к основным плюсам ее можно отнести идеальное сочетание энергоэффективности и производительности.

    Итоги

    Безусловно, Cortex A7 — это целая эпоха в мире мобильных устройств. Именно с ее появлением мобильные устройства стали доступными и достаточно производительными. И один тот факт, что она уже более 5 лет успешно продается, лишнее тому подтверждение. Но если вначале гаджеты на ее базе занимали средний и премиум сегменты рынка, то сейчас за ними остался лишь бюджетный класс. Эта архитектура устарела и постепенно уходит в прошлое.