Amd athlon 64 x2 описание. Двухъядерные процессоры. Конфигурация тестовых стендов

Инструкция

Необходимо помнить при этом, что процесс разгонки процессора довольно опасен и при отсутствии должной аккуратности и внимательности может привести к нестабильной работе, сбоям и даже к выходу системы из строя. Если вы новичок в теме оверклокинга (от англ. overclocking - разгон) вам необходимо разобраться с инструкцией к вашему процессору и другому оборудованию, желательно также найти перемычки/джамперы/пункты меню BIOS, отвечающие за частоту FSB, шины памяти, коэффициента умножения, делителя для PCI и AGP.

«Начинка» процессора AMD Athlon 64 X2 представляет собой кристалл, объединяющий в себе два ядра, каждое из которых обладает собственным кэшем L2. Для процессоров AMD Athlon актуальным является , основанный на увеличении коэффициента умножения.

Для тестирования процессора после разгонки вам понадобится программа S&M или подобная ей. Ее легко можно найти в интернете. Скачайте программу и установите ее.

Процесс разгонки начинается в BIOS. Для входа в BIOS нажмите клавишу DEL при начальной стадии загрузки системы. Откройте вкладку Power Bios Setup, в ней выберите пункт Memory Frequency и установите значение DDR400 (200Mhz). Снижение частоты памяти позволит вам снизить уровень лимитирования разгона процессора. Далее сохраните изменения с помощью опции Save changes and exit и перезагрузите компьютер.

После перезагрузки вновь зайдите в BIOS. Откройте вкладку Advanced Chipset Features и выберите пункт DRAM Configuration. В открывшемся окне в каждом пункте, вместо Auto, установите значения, которые находятся справа от знака slash (/). Этим вы ещё дальше отодвинете предел стабильной работы для вашей памяти.

Снова выйдите в меню Advanced Chipset Features и найдите пункт HyperTransport Frequency. Этот параметр также может называться HT Frequency или LDT Frequency. Выберите его и уменьшите частоту до 400 или 600 МГц (х2 или х3). Далее перейдите в меню Power Bios Setup, выберите пункт Memory Frequency и установите значение DDR200 (100Mhz). Снова сохраните настройки (Save changes and exit). После перезапуска - снова в BIOS.

Начинается самая интересная часть - непосредственно разгон процессора. Откройте меню Power Bios Setup, выберите CPU Frequency. Далее вам необходимо выбрать пункт, который, в зависимости от версии BIOS, может иметь названия CPU Host Frequency, CPU/Clock Speed или External Clock. Повысьте значение с 200 до 250 MHz - этим вы непосредственно разгоняете процессор. Снова сохраните настройки и загрузите операционную систему. Запустите программу S&M и в главном меню нажмите кнопку «Начать». Если в результате проверки система покажет высокую стабильность, увеличьте значение CPU Host Frequency еще на несколько пунктов и снова проведите . Повторяйте действия до тех пор, пока не найдете оптимальный баланс между разгоном системы и ее стабильностью. Вы достигли цели - ваш процессор разогнан.

Обратите внимание

Не забывайте контролировать температуру процессора, очень нежелательно превышать 60°.

Источники:

  • как разогнать процессор amd athlon 64 x2
  • Ситуация со старшими Socket 939 Athlon 64 FX/Athlon 64 X2

Мы часто бываем не удовлетворены мощностями своего компьютера. Одна из основных деталей компьютера – процессор. Конечно, разгоняя его, мы увеличиваем мощность ПК. Существует масса фирм, производящих процессоры. Методы разгона могут различаться в зависимости от его фирмы-производителя.

Вам понадобится

  • Компьютер, доступ в интернет, простой карандаш, лак цапон, клей.

Инструкция

Если у вас модель Athlon, выпущенная ранее 2004 года, то улучшить его качества можно очень простым способом. Берем обычный с грифелем 0,3 или 0,5 мм. На ищем ряд точек золотистого цвета с маркировкой L1. Может показаться, что они соединены , но на самом деле, эта нить перерезана. Теперь дорисовываем линию в том месте, где ее нет. В итоге должна получиться непрерывная линия из золотой нити с графитом посередине. Таким образом соедините все контакты. Не давите на карандаш слишком сильно, вы можете повредить .

Если ваш процессор позднее 2004 года выпуска, то разгонять его нужно немного по-другому. Возьмите клей и аккуратно заполните отверстия между контактами L1. Ни в коем случае не наносите клей на сами контакты, это испортит ваш процессор. Дайте клею высохнуть. Удалите остатки клея, который не попал в отверстия. Возьмите проводящий лак цапон и проведите линию между контактами L1 аналогично тому, как поступали с карандашом. Выполняйте такие действия для каждой пары контактов.

Скачайте программу, которая будет увеличивать частоту, на которой процессор. Для этого узнайте название материнской платы, зайдите на сайты, предоставляющие бесплатные утилиты и выберите подходящую программу. Скачайте также обновленные для материнской платы. Сделать это можно с официального сайта . Отключите функцию регулировки частоты , если она есть. Запустите программу. Повысьте множитель и частоту процессора. Не устанавливайте максимальные настройки, это может привести к перегоранию процессора.

Зайдите в BIOS и найдите опцию, отвечающую за частоту процессора. Она может находиться в разных разделах и даже называться по-разному, поэтому обязательно найдите в интернете сайт с описание БИОСа именно для вашей материнской платы. Стрелкой переместитесь на показатель и нажмите Enter. Установите нужную частоту, сохраните изменения и перезагрузите компьютер.

Видео по теме

Обратите внимание

Процесс разгона может привести к перегоранию процессора, поэтому будьте предельно аккуратны при работе.

Полезный совет

После разгона процессора, как правило, увеличивается его температура, поэтому рекомендуется поставить мощный кулер для охлаждения.

Источники:

  • Статья о процессорах марки Athlon

Разгон комплектующих (оверклокинг) позволяет получить от компьютера, куда большую производительность, чем есть изначально. Данную процедуру не рекомендуется проводить неопытным пользователям, чтобы не повредить детали компьютера.

Представляем горячую новинку этого лета: массовый двухъядерный процессор от AMD. За $354 вы можете получить два ядра, работающие на частоте 2 ГГц и имеющие по 512 Кбайт L2 кеша. Но достаточно ли этого для удовлетворительной производительности? Ответ – в нашем обзоре, в котором вы найдёте и дополнительные бонусы: тестирование энергопотребления, оверклокинг и бенчмарки в 64-битной версии Windows.

Появление на рынке двухъядерных процессоров для настольных компьютеров было встречено пользователями с воодушевлением. Новые архитектуры, позволяющие объединить два процессорных ядра на одном полупроводниковом кристалле, дали существенный толчок в увеличении производительности современных CPU. В свете того, что производители процессоров в последнее время испытывают очень большие трудности в части дальнейшего наращивания тактовых частот, появление двухъядерных CPU трудно переоценить. Однако, как и любые другие новые продукты, процессоры с двумя ядрами оказались достаточно дорогими, чтобы в короткий срок стать массовыми решениями. В первую очередь это касается двухъядерных процессоров семейства AMD Athlon 64 X2. CPU этой линейки изначально позиционировались производителем как процессоры более высокого класса, нежели обычные Athlon 64. Это вылилось в то, что стоимость процессоров линейки Athlon 64 X2 лежала в пределах от $500 до $1000.

При этом Intel в ценообразовании на свои двухъядерные процессоры проявил более демократичный подход. Стоимость процессоров линейки Pentium D начинается с отметки в $241, что позволяет этим CPU попадать в настольные компьютеры класса mainstream. Впрочем, такое различие в ценах возникает не на пустом месте: производительность двухъядерных процессоров AMD, предлагаемых до сегодняшнего дня, значительно выше быстродействия CPU класса Pentium D.

Надо сказать, что такое положение дел вряд ли нравилось AMD. То, что Intel предлагает гораздо более дешёвые двухъядерные процессоры, вряд ли устраивало маркетологов AMD. Поэтому, сразу вслед за анонсом первых CPU с двумя ядрами инженерам AMD была дана команда по поиску путей удешевления двухъядерных процессоров. И задача эта была решена: сегодня, 1 августа 2005 года компания анонсирует младшую модель в линейке Athlon 64 X2 с рейтингом 3800+, стоимость которой (согласно официальному прайс-листу) опустилась до отметки $354. Не менее приятный факт заключается и в том, что данный анонс носит отнюдь не "бумажный" характер, AMD Athlon 64 X2 3800+ появится в магазинах с минуты на минуту.

Стоимость младшей модели линейки Athlon 64 X2 снижена достаточно стандартным методом. Во-первых, тактовая частота этого процессора опущена ниже частоты остальных двухъядерных CPU от AMD, а во-вторых, этот процессор имеет уменьшенный размер кеш-памяти второго уровня. Благодаря урезанию L2 кеша AMD получила возможность уменьшить ядро, что естественно, положительным образом сказывается на себестоимости. Так, первые процессоры Athlon 64 X2 основывались на ядре с кодовым именем Toledo, состоящем из 233.2 млн. транзисторов и имеющем площадь 199 кв. мм. Новое же ядро Manchester, нашедшее применение как в новом Athlon 64 X2 3800+, так и в некоторых других процессорах линейки, имеет площадь 147 кв. мм и содержит лишь 154 млн. транзисторов. Это, конечно, больше, чем содержится в одноядерных CPU от AMD, но, тем не менее, позволяет увеличить выход кристаллов с одной 200 мм пластины на 38%. Кстати, благодаря сокращению кеш-памяти второго уровня, площадь ядра процессоров Athlon 64 X2 с ядром Manchester вплотную приблизилась к площади ядра CPU серии Pentium 4 6XX, что само по себе уже говорит о многом.

Таким образом, новый Athlon 64 X2 3800+ представляет собой весьма любопытный объект для исследования. Этот двухъядерный процессор от AMD попадает в несколько иную ценовую категорию, нежели его предшественники, что в теории может сделать его хитом продаж. Конечно, при условии, что его производительность окажется на хорошем уровне. В этом обзоре мы как раз и поговорим о перспективности этой новинки, располагая результатами тестов.

Подробности о AMD Athlon 64 X2 3800+

Подробно о двухъядерных процессорах AMD мы уже говорили в статье "Обзор двухъядерного процессора AMD Athlon 64 X2 4800+ ". Отличия Athlon 64 X2 3800+ от его старших собратьев состоят в уменьшенном размере кеш-памяти второго уровня, составляющем по 512 Кбайт на каждое из ядер (такой же размер L2 кеша имеют и Athlon 64 X2 4600+ и 4200+), а также в пониженной до 2.0 ГГц тактовой частоте. Таким образом, с учётом новинки полная линейка двухъядерных CPU от AMD принимает следующий вид:

Тактовая частота Объём L2 кеша Цена
Athlon 64 X2 4800+ 2.4 ГГц 1 Мбайт + 1 Мбайт $1001
Athlon 64 X2 4600+ 2.4 ГГц 512 Кбайт + 512 Кбайт $803
Athlon 64 X2 4400+ 2.2 ГГц 1 Мбайт + 1 Мбайт $581
Athlon 64 X2 4200+ 2.2 ГГц 512 Кбайт + 512 Кбайт $537
Athlon 64 X2 3800+ 2.0 ГГц 512 Кбайт + 512 Кбайт $354

Полные же спецификации новинки, процессора Athlon 64 X2 3800+, мы приводим в таблице ниже:

Athlon 64 X2 3800+
Маркировка ADA3800DAA5BV
Частота 2.0 GHz
Тип упаковки 939-pin organic micro-PGA
Размер L2 кеша 512 Кбайт + 512 Кбайт
Контроллер памяти 128-бит, двухканальный
Поддерживаемые типы памяти DDR400 SDRAM
Частота шины HyperTransport 1 ГГц
Степпинг ядра E4
Технология производства 90 нм, SOI
Число транзисторов 154 млн.
Площадь ядра 147 кв. мм
Типичное тепловыделение 89 Вт
Максимальная температура корпуса 65 град.
Напряжение питания ядра 1.35В
Поддержка технологии AMD64 Есть
Поддержка NX-бит Есть
Поддержка технологии Cool’n’Quiet Есть

Хочется обратить внимание читателя на тот факт, что тепловой пакет для Athlon 64 X2 3800+ установлен в 89 Вт. Это означает, что этот процессор может работать со всеми теми материнскими платами и системами охлаждения, которые совместимы с обычными CPU семейства Athlon 64. Примечательность данного факта состоит в том, что предыдущие модели Athlon 64 X2, за исключением модели 4200+, имели типичное тепловыделение 110 Вт.

Достаточно любопытным представляется и то, что Athlon 64 X2 3800+ имеет чётко обозначенное напряжение питания в 1.35В. Очевидно, что повышение напряжения питания до 1.4В для выпуска младшей модели в семействе не требуется.

Диагностическая утилита CPU-Z выдаёт об Athlon 64 X2 3800+ следующую информацию:

Здесь нас никакие сюрпризы не поджидают, утилита детектирует ядро Manchester, работающее на 2-гигагерцовой частоте.

Энергопотребление и технология Cool’n’Quiet

Измеренное нами практическое энергопотребление рассматриваемого процессора в режиме максимальной загрузки (создаваемой специализированной утилитой S&M 1.7.2) составило 65.1 Вт. Давайте сравним эту величину с энергопотреблением других процессоров:

Как видим, Athlon 64 X2 3800+ вполне оправдывает установленную для него величину типичного тепловыделения. Процессор, хотя и потребляет больше одноядерных собратьев семейства Athlon 64 (на ядре Venice), до энергопотребления Athlon 64 FX-57 с тепловым пакетом 104 Вт всё-таки не дотягивает. Сравнение же с процессорами конкурента в данном контексте вообще бессмысленно, любые CPU от Intel потребляют примерно в два раза больше своих прямых соперников от AMD.

Пару слов необходимо сказать о технологии Cool’n’Quiet, которая перекочевала в двухъядерные процессоры AMD из своих одноядерных предшественников. Эта технология поддерживается в Athlon 64 X2 3800+ в полной мере, единственная особенность состоит в том, что оба ядра снижают частоту и напряжение питания при низкой загрузке синхронно.

В состоянии пониженного энергопотребления частота Athlon 64 X2 3800+ падает до 1 ГГц, а напряжение уменьшается до 1.1В. В результате, в состоянии покоя энергопотребление процессора снижается до 5.8 Вт, что делает Athlon 64 X2 3800+ весьма экономичным CPU. Впрочем, ещё большей экономии можно было бы добиться, если бы ядра могли входить в состоянии пониженного энергопотребления независимо друг от друга. Однако, данная возможность, видимо, будет реализована лишь в двухъядерных CPU, нацеленных на использование в мобильных компьютерах.

Как мы тестировали

Тестирование производительности AMD Athlon 64 X2 3800+ мы выполняли, сравнивая результаты этого CPU с показателями быстродействия процессоров близкой стоимости. В их число вошли Athlon 64 3800+, его цена на сегодня составляет $373; Pentium 4 650 cо стоимостью $401 и Pentium D 830 с ценой в $316.

Таким образом, в тестировании приняло участие несколько систем, состояли которые из перечисленного ниже набора комплектующих:

  • Процессоры:
    • AMD Athlon 64 X2 3800+ (Socket 939, 2.0 ГГц, 2 x 512KB L2, ревизия ядра E4 - Manchester);
    • AMD Athlon 64 3800+ (Socket 939, 2.4 ГГц, 512KB L2, ревизия ядра E3 - Venice);
    • Intel Pentium D 830 (LGA775, 3.0 ГГц, 2 x 1MB L2);
    • Intel Pentium 4 650 (LGA775, 3.4 ГГц, 2MB L2).
  • Материнские платы:
    • ASUS P5WD2 Premium (LGA775, Intel 955X);
    • DFI NF4 Ultra-D (Socket 939, NVIDIA nForce4 Ultra).
  • Память:
    • 1024MB DDR400 SDRAM (Corsair CMX512-3200XLPRO, 2 x 512MB, 2-2-2-10);
    • 1024MB DDR2-667 SDRAM (Corsair CM2X512A-5400UL, 2 x 512MB, 4-4-4-14).
  • Графическая карта: PowerColor RADEON X850 XT (PCI-E x16).
  • Дисковая подсистема: Maxtor MaXLine III 250GB (SATA150).
  • Операционные системы:
    • Microsoft Windows XP Professional SP2;
    • Microsoft Windows XP Professional x64 Edition.

Особенностью этого тестирования стало использование сразу двух операционных систем: 32-битной и 64-битной версий Windows XP. Тестируя производительность процессоров в 64-битном режиме, мы в первую очередь старались использовать "родные" 64-битные приложения, которых уже стало достаточно много. Таким образом, полученные результаты дадут нам возможность оценить не только производительность процессоров в обычном 32-битном режиме, но и посмотреть, как поведут себя испытуемые CPU при задействовании технологий AMD64 и EM64T.

Впрочем, справедливости ради следует заметить, что большое число 64-битных приложений, доступных сегодня, представляют собой сделанные энтузиастами порты Open Source программ. Соответственно, такие программы весьма специфичны. К сожалению, крупных коммерческих продуктов от известных производителей в 64-битных версиях пока крайне мало.

Производительность

Новая редакция теста PCMark принципиально не отличается от прошлых версий. Тест CPU из этого пакета основывается на реальных алгоритмах шифрования и сжатия данных, плюс активно использует многопоточность. Соответственно, неудивителен и полученный результат. Двухъядерные процессоры показывают лучшую производительность, чем одноядерные, а CPU с NetBurst архитектурой, традиционно показывающие более высокое быстродействие в PCMark, вновь могут похвастать лучшими результатами по данным этого теста.

Также, необходимо отметить, что производительность процессоров с технологиями AMD64 и EM64T в PCMark05 совершенно одинакова как в 32-битной операционной системе, так и в 64-битной ОС. Это как раз наглядно подтверждает эффективность x86-64 архитектуры: исполняемые в 64-битной операционной системе в режиме совместимости 32-битные приложения работают с той же скоростью, что и в родной для них 32-битной среде.

То же самое можно сказать и про результаты в 3DMark05. Использование 64-битной системы Microsoft Windows XP Professional x64 Edition с соответствующими драйверами не приводит к падению производительности в 32-битных DirectX программах. Так что геймеры, по всей видимости, не должны опасаться миграции в 64-битную среду, поддерживаемую процессорами AMD с технологией AMD64 и процессорами Intel с технологией EM64T.

Сам по себе тест 3DMark05, как и большинство игр, не поддерживает многопоточность. Поэтому двухъядерные процессоры никак не проявляют себя здесь. Однако в состав этого тестового пакета входят специализированные тесты CPU, в которых многопоточность используется для расчёта шейдеров и одновременного моделирования игровой среды.

Новый процессор Athlon 64 X2 3800+ показывает здесь вполне адекватную своей стоимости производительность. В первом игровом тесте он обгоняет своих одноядерных конкурентов, немного уступая Pentium D 830 с тактово й частотой 3.0 ГГц. Зато во втором тесте его быстродействие оказывается недосягаемым для всех CPU той же что и он ценовой категории.

Производительность в играх

Современные игры не используют многопоточность, поэтому двухъядерные процессоры в приложениях этого типа не могут похвастать высокими результатами. Так, Athlon 64 X2 3800+ здесь показывает такое же число fps, как демонстрировал бы одноядерный Athlon 64 3200+:

Впрочем, благодаря тому, что архитектура K8 показывает себя очень эффективной именно в игровых приложениях, Athlon 64 X2 3800+ в играх уступает аналогичному по цене одноядерному CPU семейства Pentium 4 не так уж и значительно. Кроме того, мы вновь можем отметить, что переход в 64-битный режим мало сказывается на скорости работы 32-битных игровых приложений.

Несмотря на то, что разработчики игр не балуют нас использованием преимуществ многоядерных архитектур, 64-битные расширения худо-бедно всё же начинают использоваться. Не так давно появился патч для популярной игры Far Cry, позволяющий её использование в Microsoft Windows XP Professional x64 Edition в 64-битном режиме. Естественно, мы не смогли обойти стороной этот факт и протестировали производительность процессоров не только в стандартной 32-битной, но и в 64-битной версии этой игры.

Как видим, 64-битный Far Cry способен продемонстрировать более высокий уровень fps. Так, использование 64-битной операционной системы и 64-битной версии игры позволяет получить дополнительное преимущество порядка 3-5%.

Сжатие данных

Популярный архиватор WinRAR многопоточность не поддерживает, поэтому результаты, показанные в нём рассматриваемым в этом обзоре процессором Athlon 64 X2 3800+ относительно невысоки. По крайней мере, он уступает в быстродействии одноядерным CPU той же ценовой категории. Впрочем, если сравнивать результат Athlon 64 X2 3800+ с показателями двухъядерного процессора Intel Pentium D 830, то всё выглядит не так уж и плохо: производительность у этих двух CPU примерно одинакова.

Также следует обратить внимание на тот факт, что запуск 32-битной утилиты WinRAR в 64-битной операционной системе несколько снижает её быстродействие. По всей видимости, это замедление вносит интерпретатор WoW64, благодаря которому реализуется функционирование 32-битных программ в Microsoft Windows XP Professional x64 Edition.

Среди архиваторов есть и программы, поддерживающие многопоточность. К таким утилитам относится, например 7zip. Помимо возможности эффективной работы с многоядерными процессорами, 7zip отличается ещё и тем, что существует и в 64-битной версии. Поэтому, тестирование производительности с его использованием представляется нам очень любопытным.

Алгоритм сжатия данных в 7zip эффективно использует технологию Hyper-Threading. Тем не менее, производительность процессора Pentium D 830 с частотой 3 ГГц оказывается примерно равной производительности Pentium 4 650 с частотой 3.4 ГГц. Одноядерный Athlon 64 3800+ уступает здесь процессорам от Intel, а Athlon 64 X2 3800+, хотя и показывает на 22% более высокий результат, чем Athlon 64 3800+, догнать конкурентов в семействах Pentium 4 и Pentium D не может.

Сказанное выше относилось лишь к 32-битной версии архиватора. Использование же 64-битной версии изменяет изложенный расклад. Дело в том, что процессоры Athlon 64 от задействования 64-битных регистров получают осязаемый выигрыш в производительности, чего никак нельзя сказать о процессорах Pentium 4 и Pentium D. Быстродействие CPU с NetBurst архитектурой в 64-битном режиме, как мы видим на примере 7zip, может оказаться ниже производительности CPU в 32-битном режиме. Поэтому, 64-битная версия 7zip ставит на первое место процессор Athlon 64 X2 3800+.

При разархивации и Athlon 64, и Pentium 4 работают быстрее при использовании 64-битного режима. Однако, в данном случае, процессоры c архитектурой K8 более эффективны: лидирует одноядерный Athlon 64 3800+, двухъядерный же Athlon 64 X2 3800+, отставая на 18%, демонстрирует второй результат.

Кодирование медиа данных

В первую очередь остановимся на кодировании аудио в формат mp3 популярным кодеком lame. Для целей тестирования мы использовали неофициальную версию 3.97, поддерживающую многопоточность и имеющую 64-битный вариант.

При кодировании аудио процессоры с двухъядерной архитектурой могут похвастать более высокой скоростью, нежели их одноядерные собратья, несмотря на их более низкую тактовую частоту. Если использовать 32-битный кодек, то по данным этого теста лидирует двухъядерный Intel Pentium D 830. Если же прибегать к 64-битной версии кодека, то картина меняется. По странному стечению обстоятельств, 64-битная версия LAME работает медленнее 32-битной. При этом, если замедление процессоров Athlon 64 составляет менее 10%, то процессоры Pentium 4 и Pentium D теряют в скорости около 20%. В итоге, при использовании 64-битной версии LAME лучший результат показывает Athlon 64 X2 3800+.

Столь странное поведение 64-битного порта LAME связано, скорее всего, с проблемами компилятора от Microsoft, который использовался для сборки кода. Впрочем, в таких "клинических" случаях, когда 64-битная версия программы оказывается медленнее 32-битной, никто не мешает в 64-битной операционной системе использовать более быстрый вариант, хоть он и приводит к активации режима совместимости.

Также, в природе существует и 64-битный порт видеокодека XviD. Используя этот кодек, мы провели тестирование скорости кодирования видео в 32-битной и 64-битной операционной системе.

Таких же неожиданностей, как в случае с LAME здесь нет. 64-битная версия кодека работает явно быстрее 32-битной. Однако при этом получить выигрыш от использования процессоров с двухъядерной архитектурой при кодировании XviD, к сожалению, не даёт. Таким образом, в выбранной ценовой категории, самую высокую скорость при сжатии видео кодеком XviD обеспечивает процессор Athlon 64 3800+.

Рассмотрим теперь производительность тестируемых процессоров в кодеках, не имеющих 64-битных клонов.

Двухъядерная архитектура процессора Athlon 64 X2 3800+, вместе с поддержкой им набора инструкций SSE3, к сожалению, не позволяет этому CPU продемонстрировать высший результат. Лидером здесь оказывается Pentium D 830. Заметим, что в этом кодеке двухъядерный процессор AMD работает немного медленнее одноядерного CPU той же ценовой категории, в то время как с процессорами Intel всё происходит наоборот: одноядерный Pentium 4 650 проигрывает Pentium D 830.

Результаты при кодировании кодеком DivX вполне предсказуемы. Архитектура NetBurst здесь эффективнее, чем K8. Кроме того, несмотря на поддержку этим кодеком многопоточности, более высокая частота одноядерных процессоров оказывается важнее дополнительного ядра, которым располагают CPU семейств Athlon 64 X2 и Pentium D. Также, хочется отметить весьма любопытный факт, что в 64-битной операционной системе Microsoft Windows XP Professional x64 Edition 32-битный кодек DivX работает слегка быстрее, чем в родной для него 32-битной среде. Размер этого преимущества составляет порядка 3-5%.

Во время предыдущих тестирований двухъядерных процессоров мы уже отмечали, что Windows Media Encoder является отличным примером приложения, эффективно задействующих два ядра. Так, преимущество Athlon 64 X2 3800+ над Athlon 64 3800+ составляет тут более 30%, несмотря на то, что двухъядерный процессор имеет на 17% более низкую тактовую частоту. В целом же Athlon 64 X2 3800+ удаётся слегка обойти в этом тесте даже Pentium D 830, несмотря на то, что архитектура NetBurst весьма неплохо показывает себя при кодировании медиа данных.

Вычислительные задачи

Популярный бенчмарк SuperPi многопоточность не поддерживает. Поэтому в нём процессоры с двумя ядрами уступают одноядерным CPU.

Тест ScienceMark 2.0 весьма интересен. Во-первых, он поддерживает все современные наборы инструкций и многопоточность, а во-вторых, существует и в версии для Microsoft Windows XP Professional x64 Edition. Причём, использование 64-битного кода для математического моделирования физических процессов, выполняемого в рамках этого бенчмарка, позволяет получить довольно-таки весомый рост производительности, который в подтесте Molecular Dynamics превышает даже 100%.

Процессоры AMD в этом тесте, задействующем вычислительные ресурсы CPU по полной программе, показывают более высокие результаты, нежели конкурирующие продукты от Intel. При этом новый двухъядерный CPU Athlon 64 X2 3800+ в обоих подтестах опережает одноядерного собрата Athlon 64 3800+, автоматически становясь лидером.

Профессиональные приложения

В Adobe Photoshop CS2, поддерживающем многопоточность, Athlon 64 X2 3800+ оказывается быстрее всех остальных процессоров той же ценовой категории, включая и двухъядерный Pentium D 830.

Выигрывает у конкурентов Athlon 64 X2 3800+ и в 3ds max во время измерения производительности при финальном рендеринге. Следует заметить, что подобные задачи хорошо распараллеливаются, и благодаря этому Athlon 64 X2 3800+ обгоняет одноядерный Athlon 64 3800+ на 49%, то есть даже сильнее, чем при кодировании в Windows Media Encoder 9.

А вот работа в 3ds max в Viewports быстрее осуществляется всё-таки при применении одноядерных CPU.

Кстати, заметим сильное падение производительности в данном тесте при использовании 64-битной версии операционной системы. Создаётся впечатление, что проблема заключается в не до конца оптимизированных драйверах.

Photoshop и 3ds max – это 32-приложения. К сожалению, производители не предлагают (пока?) версии этих программ, скомпилированные специально для Microsoft Windows XP Professional x64 Edition. Однако, к счастью, один из профессиональных пакетов 3D графики уже доступен в версии для x86-64. Это – CINEMA 4D от MAXON. Естественно, мы не смогли обойти стороной это приложение и измерили производительность в нём при помощи специального теста CINEBENCH 2003.

Как и в 3ds max, двухъядерный процессор демонстрирует наивысшую производительность при финальном рендеринге и в CINEMA 4D. При этом следует заметить, что скорость финального рендеринга в 64-битных режимах возрастает ещё сильнее, так что в задачах подобного типа сам бог велел использовать двухъядерные 64-битные CPU.

При работе в OpenGL мы можем наблюдать тот же эффект, который наблюдался и в 3ds max, только в данном случае он проявляется на нативном 64-битном приложении. Использование Microsoft Windows XP Professional x64 Edition и приложения, использующего процессорный Long Mode, приводит к некоторому падению производительности. Списать этот эффект, видимо, вновь придётся на драйвера. Что же касается производительности рассматриваемого процессора, то в тестах, использующих OpenGL, вновь лучше себя показывают одноядерные CPU.

Разгон

Поскольку новый процессор Athlon 64 X2 3800+ стал младшей моделью в линейке двухъядерных CPU от AMD, именно он в первую очередь будет интересовать оверклокеров. Для тестирования разгонных возможностей этого процессора мы собрали систему из тех же комплектующих, что и использовались во время измерения производительности, то есть на основе отлично зарекомендовавшей себя материнской платы DFI NF4 Ultra-D. В качестве устройства охлаждения CPU нами был использован воздушный кулер Thermaltake CL-P0200.

Штатный коэффициент умножения процессора Athlon 64 X2 3800+ - 10x, изменять его можно лишь в сторону уменьшения (благодаря поддержке технологии Cool’n’Quiet). Соответственно, разгонять процессор приходится увеличением частоты тактового генератора. Чтобы при оверклокинге не "упереться" в предельные режимы других комплектующих, во время наших испытаний частоты шин PCI Express и PCI фиксировались на штатных значениях, а коэффициент для шины HyperTransport уменьшался до 4x. Для частоты памяти также устанавливался уменьшающий делитель, гарантирующий полную работоспособность модулей DIMM при увеличении частоты тактового генератора.

В процессе наших экспериментов мы установили максимальную частоту тактового генератора, при которой процессор сохраняет стабильность. Она составила 240 МГц. Для покорения этого предела нам даже пришлось несколько увеличить напряжение питания процессорного ядра – до 1.45В. Достигнутая частота процессора при этом составила 2.4 ГГц.

Таким образом, в процессе экспериментов по разгону нам удалось поднять частоту Athlon 64 X2 3800+ на базе ядра Manchester на 20%. Надо отметить, что это не так уж и много, на такой же частоте работают двухъядерные процессоры Athlon 64 X2 4800+ и Athlon 64 X2 4600+. Причём, последний основывается как раз на ядре Manchester. То есть, нам удалось разогнать Athlon 64 X2 3800+ только лишь до уровня Athlon 64 X2 4600+. Видимо, для производства младшей модели в своей двухъядерной линейке AMD использует не самые лучшие ядра. Например, при испытаниях Athlon 64 X2 4800+, правда, на ядре Toledo, нам удалось добиваться работы процессора на частоте в 2.7 ГГц.

Впрочем, чем богаты, тем и рады. Чтобы понять, насколько быстр разогнанный Athlon 64 X2 3800+ по сравнению со старшими процессорами от AMD, мы провели несколько тестов, в которых сравнили нашего "подопытного кролика" с Athlon 64 FX-57 и Athlon 64 X2 4800+. Для чистоты эксперимента память во всех тестах работала на частоте 200 МГц с минимальными таймингами 2-2-2-10.

Как видим, разогнанный до 2.4 ГГц Athlon 64 3800+ ни в одном из проведённых тестов лидирующей позиции не занимает. Однако его производительность при этом всё равно находится на очень хорошем уровне. Например, в приложениях, поддерживающих многопоточность, он может обгонять Athlon 64 FX-57. Отставание же от Athlon 64 X2 4800+, оснащённого кеш-памятью второго уровня объёмом по 1 Мбайту на каждое из ядер, составляет в среднем лишь 1-2%.

Впрочем, при этом встречаются и приложения, весьма критичные к объёму кеш-памяти. В них уровень отставания разогнанного Athlon 64 X2 3800+ от Athlon 64 X2 4800+ может доходить и до 10%. Хотя, конечно, это вряд ли может расстроить владельцев Athlon 64 X2 3800+, который стоит втрое дешевле, чем Athlon 64 X2 4800+ и Athlon 64 FX-57.

Выводы

С выпуском процессора Athlon 64 X2 3800+ компания AMD понизила ценовую планку для систем, основанных на двухъядерных CPU. Теперь платформы среднего уровня могут оснащаться процессорами с двумя ядрами не только от Intel, но и от AMD. Таким образом, выход Athlon 64 X2 3800+ внёс некоторую симметрию: в предложениях обоих компаний теперь есть не только экстремально дорогие двухъядерные CPU, но и аналогичные процессоры среднего уровня.

Мы не будем повторяться, рассказывая о том, в каких приложениях выгодно использование двухъядерных архитектур. Скажем лишь то, что в среднем, по результатам наших тестов, Athlon 64 X2 3800+ показал себя более быстрым процессором, чем двухъядерный конкурент от Intel, Pentium D 830. Таким образом, у этой новинки от AMD есть очень неплохие рыночные перспективы. Особенно, если принять во внимание совместимость двухъядерных процессоров от AMD с существующей инфраструктурой, относительно низкое тепловыделение, поддержку технологии Cool’n’Quiet и возможность перехода на 64-битные операционные системы и соответствующие приложения.

В качестве "ложки дёгтя" для Athlon 64 X2 3800+ следует разве только заметить, что этот процессор почему-то не смог нас поразить чудесами оверклокинга, разогнавшись всего лишь до 2.4 ГГц. Впрочем, даже в таком режиме его производительность такова, что он уступает старшим процессорам в семействах Athlon 64 X2 и Athlon 64 FX не столь значительно.

Athlon 64 x2 модели 5200+ позиционировался производителем как двухъядерное решение среднего уровня на базе АМ2. Именно на его примере и будет изложен порядок разгона данного семейства устройств. Запас прочности у него достаточно неплохой, и при наличии соответствующих комплектующих можно было получить вместо него чипы с индексами 6000+ или 6400+.

Смысл разгона ЦПУ

Процессор AMD Athlon 64 x2 модели 5200+ можно легко превратить в 6400+. Для этого достаточно только повысить его тактовую частоту (в этом и заключается смысл разгона). Как результат - конечная производительность системы вырастет. Но при этом увеличится и энергопотребление компьютера. Поэтому не все так просто. Большинство компонентов компьютерной системы должно иметь запас по надежности. Соответственно, материнская плата, модули памяти, блок питания и корпус должны быть более высокого качества, это значит, что и стоимость у них будет выше. Также система охлаждений ЦПУ и термопаста должны быть специально подобраны именно для процедуры разгона. А вот со штатной системой охлаждения не рекомендуется экспериментировать. Она рассчитана на стандартный тепловой пакет процессора и с увеличенной нагрузкой не справится.

Позиционирование

Характеристики процессора AMD Athlon 64 x2 явно указывают на то, что он относился к среднему сегменту двухъядерных чипов. Были и менее производительные решения - 3800+ и 4000+. Это начальный уровень. Ну а выше в иерархии находились ЦПУ с индексами 6000+ и 6400+. Первые две модели процессоров теоретически можно было разогнать и получить из них 5200+. Ну а сам 5200+ можно было модифицировать до 3200 МГц, и за счет этого получить вариацию уже 6000+ или даже 6400+. Причем технические параметры у них были практически идентичными. Единственное что могло изменяться, так это количество кэша второго уровня и технологический процесс. Как результат уровень их производительности после разгона практически не отличался. Вот и получалось, что при меньшей стоимости конечный владелец получал более производительную систему.

Технические характеристики чипа

Характеристики процессора AMD Athlon 64 x2 могут существенно отличаться. Ведь было выпущено три его модификации. Первая из них носила кодовое название Windsor F2. Работала она на тактовой частоте в 2,6 ГГц, имела 128 кбайт кэша первого уровня и, соответственно, 2 Мб второго уровня. Изготавливался этот полупроводниковый кристалл по нормам 90 нм технологического процесса, а тепловой его пакет был равен 89 Вт. При этом максимальная температура его могла достигать 70 градусов. Ну и напряжение, подаваемое на ЦПУ, могло быть равно 1,3 В или 1,35 В.

Чуть позже появился в продаже чип с кодовым названием Windsor F3. В этой модификации процессора изменилось напряжение (в этом случае оно понизилось до 1,2 В и 1,25 В соответственно), увеличилась максимальная рабочая температура до 72 градусов и уменьшился тепловой пакет до 65 Вт. В довершение к этому изменился и сам технологический процесс - с 90 нм до 65 нм.

Последний, третий вариант процессора носил кодовое название Brisbane G2. В этом случае частота была поднята на 100 МГц и составляла уже 2,7 ГГц. Напряжение могло быть равным 1,325 В, 1,35 В или 1,375 В. Максимальная рабочая температура снижалась до 68 градусов, а тепловой пакет, как и в предыдущем случае, был равен 65 Вт. Ну и сам чип изготавливался по более прогрессивному 65 нм технологическому процессу.

Сокет

Процессор AMD Athlon 64 x2 модели 5200+ устанавливался в сокет АМ2. Второе его название - сокет 940. Электрически и в отношении программного обеспечения он совместим с решениями на базе АМ2+. Соответственно, приобрести для него материнскую плату пока еще возможно. Но вот сам ЦПУ уже купить достаточно сложно. Это неудивительно: процессор появился в продаже в 2007 году. С тех пор успело уже поменяться три поколения устройств.

Подбор материнской платы

Достаточно большой набор материнских плат на базе сокета АМ2 и АМ2+ поддерживал процессор AMD Athlon 64 x2 5200. Характеристики у них были самые разнообразные. Но вот чтобы по максимуму стал возможен разгон этого полупроводникового чипа, рекомендуется обращать внимание на решения на базе чипсета 790FX или 790Х. Стоили подобные материнские платы дороже среднего. Это логично, так как возможности для разгона у них были значительно лучше. Также плата должна быть изготовлена в форм-факторе АТХ. Можно, конечно, попытаться разогнать данный чип и на решениях мини-АТХ, но плотная компоновка радиодеталей на них может привести к нежелательным последствиям: перегреву материнской платы и центрального процессора и выходу их из строя. В качестве конкретных примеров можно привести PC-AM2RD790FX от Sapphire или 790XT-G45 от MSI. Также достойной альтернативой приведенным ранее решениям может стать M2N32-SLI Deluxe от Asus на базе чипсета nForce590SLI, разработанного NVIDIA.

Система охлаждения

Разгон процессора AMD Athlon 64 x2 невозможен без качественной системы охлаждения. Тот кулер, который идет в коробочной версии данного чипа, не подходит для этих целей. Он рассчитан на фиксированную тепловую нагрузку. При увеличении производительности ЦПУ его тепловой пакет возрастает, и штатная система охлаждения уже не будет справляться. Поэтому нужно покупать более продвинутую, с улучшенными техническими характеристиками. Можно порекомендовать для этих целей использовать кулер CNPS9700LED от Zalman. При наличии его данный процессор можно смело разгонять до 3100-3200 МГц. При этом особых проблем с перегревом ЦПУ точно не будет.

Термопаста

Еще один важный компонент, который нужно учитывать перед тем, AMD Athlon 64 x2 5200 +, это термопаста. Ведь чип будет функционировать не в режиме штатной нагрузки, а в состоянии увеличенной производительности. Соответственно, к качеству термопасты выдвигаются более жесткие требования. Она должна обеспечивать улучшенный теплоотвод. Для этих целей рекомендуется заменить штатную термопасту на КПТ-8, которая отлично подойдет для условий разгона.

Корпус

Процессор AMD Athlon 64 x2 5200 будет работать с увеличенной температурой в процессе разгона. В некоторых случаях она может подниматься до 55-60 градусов. Чтобы компенсировать эту увеличенную температуру, одной качественной замены термопасты и системы охлаждения будет недостаточно. Также нужен корпус, в котором воздушные потоки могли бы хорошо циркулировать, а за счет этого обеспечивалось бы дополнительное охлаждение. То есть внутри системного блока должно быть как можно больше свободного пространства, и это бы позволило за счет конвекции обеспечить охлаждение компонентов компьютера. Еще лучше будет, если в нем будут установлены дополнительные вентиляторы.

Процесс разгона

Теперь разберемся с тем, как разогнать процессор AMD ATHLON 64 x2. Выясним это на примере модели 5200+. Алгоритм разгона ЦПУ в это случае будет таким.

  1. При включении ПК нажимаем клавишу Delete. После этого откроется синий экран БИОСа.
  2. Затем находим раздел, связанный с работой оперативной памяти, и снижаем частоту ее работы до минимума. Например, задано значение для ДДР1 333 MHz, а мы опускаем частоту до 200 MHz.
  3. Далее сохраняем внесенные изменения и загружаем операционную систему. Потом с помощью игрушки или тестовой программы (например, CPU-Z и Prime95) проверяем работоспособность ПК.
  4. Опять перезагружаем ПК и заходим в БИОС. Здесь теперь находим пункт, связанный с работой шины PCI, и фиксируем ее частоту. В этом же месте необходимо зафиксировать данный показатель для графической шины. В первом случае значение должно быть установлено в 33 MHz.
  5. Сохраняем параметры и перезагружаем ПК. Заново проверяем его работоспособность.
  6. На следующем этапе выполняется перезагрузка системы. Заново входим в БИОС. Здесь находим параметр, связанный с шиной HyperTransport, и устанавливаем частоту работы системной шины в 400 МГц. Сохраняем значения и перезагружаем ПК. После окончания загрузки ОС тестируем стабильность работы системы.
  7. Потом перезагружаем ПК и входим заново в БИОС. Здесь необходимо теперь перейти в раздел параметров процессора и увеличить частоту системной шины на 10 МГц. Сохраняем изменения и перезагружаем компьютер. Проверяем стабильность системы. Затем, постепенно повышая частоту процессора, доходим до того момента, когда он перестает стабильно работать. Далее возвращаемся к предыдущему значению и опять тестируем систему.
  8. Затем можно попытаться дополнительно разогнать чип с помощью его множителя, который должен быть в этом же разделе. При этом после каждого внесения изменений в БИОС сохраняем параметры и проверяем работоспособность системы.

Если в процессе разгона ПК начинает зависать и вернуться к предыдущим значениям невозможно, то необходимо сбросить настройки БИОСа на заводские. Для этого достаточно найти в нижней части материнской платы, рядом с батарейкой, джампер с надписью Clear CMOS и переставить его на 3 секунды с 1 и 2 контакта на 2 и 3 контакты.

Проверка стабильности системы

Не только максимальная температура процессора AMD Athlon 64 x2 может привести к нестабильной работе компьютерной системы. Причина может быть вызвана рядом дополнительных факторов. Поэтому в процессе разгона рекомендуется проводить комплексную проверку надежности работы ПК. Лучше всего для решения этой задачи подходит программа Everest. Именно с ее помощью и можно проверить надежность и стабильность работы компьютера в процессе разгона. Для этого лишь достаточно после каждых внесенных изменений и после окончания загрузки ОС запускать эту утилиту и проверять состояние аппаратных и программных ресурсов системы. Если какое-то значение выходит за допустимые границы, то нужно перезагружать компьютер и возвращаться к предыдущим параметрам, а затем заново все тестировать.

Контроль системы охлаждения

Температура процессора AMD Athlon 64 x2 зависит от работы системы охлаждения. Поэтому по окончании процедуры разгона необходимо проверить стабильность и надежность работы кулера. Для этих целей лучше всего использовать программу SpeedFAN. Она и бесплатная, и уровень ее функциональности достаточный. Скачать ее из Интернета и установить на ПК не составит особого труда. Далее ее запускаем и периодически, в течение 15-25 минут, контролируем количество оборотов кулера процессора. Если это число стабильно и не уменьшается, то все в порядке с системой охлаждения ЦПУ.

Температура чипа

Рабочая температура процессора AMD Athlon 64 x2 в штатном режиме должна изменяться в диапазоне от 35 до 50 градусов. В процессе разгона этот диапазон будет уменьшаться в сторону последнего значения. На определенном этапе температура ЦПУ может даже превысить 50 градусов, и в этом ничего страшного нет. Максимально допустимое значение - 60 ˚С, приблизившись к которому, рекомендуется прекратить какие-либо эксперименты с разгоном. Более высокое значение температуры может негативно сказаться на полупроводниковом кристалле процессора и вывести его из строя. Для проведения замеров в процессе операции рекомендуется использовать утилиту CPU-Z. Причем регистрацию температуры необходимо осуществлять после каждого внесенного изменения в БИОС. Также нужно выдержать интервал в 15-25 минут, в течении которого периодически проверять, как сильно нагрелся чип.

31 мая обещает быть очень интересным днём, так как именно тогда на сектор настольных ПК выйдут двуядерные процессоры. Конечно, двуядерный Pentium Extreme Edition 840 можно купить уже сегодня - скажем, в машинах Dell, - но моделей для массового рынка Pentium D вряд ли стоит ждать раньше июля. В то же время, AMD смогла побить Intel в прибыльном секторе серверов/рабочих станций, выпустив двуядерные Opteron x65/x70/x75. Второй шаг в стратегии AMD на 2005 год - двуядерные процессоры для настольного сектора. О них и пойдёт речь в нашем обзоре.

Первый сюрприз здесь заключается в том, что, в отличие от Intel, проблемы с тепловыделением не заставили AMD уменьшать тактовую частоту двух ядер на одном физическом чипе. То есть двуядерные процессоры AMD должны работать так же быстро, как их одноядерные версии с такой же частотой. Intel, напротив, заявила частоту самого быстрого двуядерного процессора 3,2 ГГц, в то время как одноядерные модели достигли 3,8 ГГц.

Переход со 130-нм на 90-нм техпроцесс и технология кремния на изоляторе (SOI) уменьшили тепловой пакет процессоров AMD с 89 Вт до 67 Вт, с частотой до 2,2 ГГц (Winchester 3500+). В то же время, Athlon 64 FX-55 на 2,6 ГГц отличается достаточно ёмким тепловым пакетом (104 Вт), что позволяет установить двуядерные чипы на большую часть систем Socket 939, уже присутствующих на рынке. Но если вы желаете попробовать Pentium D, то придётся потратиться на новую материнскую плату, хотя физически разъём процессора не изменился.

31 мая официально выходят четыре двуядерных процессора от AMD, и все они относятся к линейке Athlon 64 X2 (напомним, что Intel имеет три модели Pentium D плюс Extreme Edition). Два процессора X2 будут использовать сдвоенные ядра Manchester с 512 кбайт кэша L2 на ядро. Две оставшиеся версии построены на дизайне Toledo с 1 Мбайт кэша L2 на логический блок.

Если варианты Manchester для массового рынка будут "влезать" в тепловой пакет 95 Вт, то более производительным моделям потребуется пакет в 110 Вт, который, в принципе, легко обеспечивается любой материнской платой, поддерживающей Athlon 64 FX-55. Хотя рассеиваемую тепловую мощность нельзя назвать низкой, не следует забывать, что топовая модель Intel на частоте 3,2 ГГц даёт максимум в 130 Вт, при этом и среднее тепловыделение процессоров Pentium D тоже оказывается выше. Довольно интересна "связь" энергопотребления для массового рынка у обоих производителей, так как здесь в обоих случаях мы получаем 95 Вт.

Hyper-Threading против двух ядер

Любая современная операционная система способна выполнять несколько программ одновременно, динамически распределяя нагрузку между всеми доступными логическими процессорами (многозадачность). При возможности, операционная система будет распределять нагрузку и на более глубоком уровне - с помощью потоков (многопоточность). Многозадачное окружение позволяет запускать несколько приложений и большое число системных служб без особого ущерба для производительности. А переход на многопоточность обеспечит такой её прирост, который намного превосходит по эффекту все частотные продвижения в области процессоров за последние годы. Система, оснащённая двуядерным процессором, сможет дать производительность, очень близкую к настоящей двухпроцессорной системе.

В 2002 году Intel уже пыталась подчеркнуть значимость двух полноценных логических процессоров на чипе, представив технологию Hyper Threading (HT). Причиной появления HT в Pentium 4 можно считать гонку тактовых частот. К тому времени Intel достигла скорости 3,06 ГГц, а исполнительный конвейер Intel состоял из 20 ступеней. AMD Athlon XP, напротив, работал с 10/15 ступенями (ALU/FPU), в то время как у Pentium III число ступеней составляло 10 (12 для Tualatin и Pentium M). Процессоры AMD Athlon 64 тоже используют 12-ступенчатый конвейер.

С одной стороны, глубоко конвейеризированный процессор способен выполнять больше действий за один такт. Это бывает особенно хорошо при использовании расширенных наборов команд SSE2 и SSE3. С другой стороны, каждая операция в процессоре проходит через большинство ступеней, впустую теряя драгоценные такты. Чтобы это компенсировать, Intel добавила логику, позволяющую, в среднем, более эффективно нагрузить конвейер Pentium 4, который с архитектуры Prescott увеличился до 31 ступени, симулируя два логических процессора.

Хотя процессор с технологией Hyper-Threading никогда не даст производительность, близкую к настоящей двухпроцессорной системе, вы получаете компьютер с лучшей отзывчивостью. Если вы когда-нибудь работали на двухпроцессорной системе (или на системе с HT), вы поймёте, что мы имеем в виду. Кроме того, есть некоторые приложения, которые ускоряют свою работу при включении HT, в то время как другие, напротив, дают меньшую производительность.

Intel гордится технологией Hyper-Threading, считая её важным промежуточным шагом при переходе от одного ядра к нескольким. Компания верит, что технология HT проложила путь для многопоточных приложений, так как они работают существенно быстрее на машине с HT. Действительно, Intel немало сделала для развития программирования, ориентированного на многопоточность. AMD, с другой стороны, всегда считала Hyper-Threading временной технологией, которая в будущем будет не нужна, - именно поэтому процессоры AMD её не поддерживают.

Ответ на поставленный вопрос, как всегда, находится где-то посередине. Действительно, средний геймер не запускает несколько приложений одновременно, пытаясь обеспечить максимум ресурсов своей игре. В то же время, профессиональная работа на ПК часто подразумевает запуск нескольких приложений одновременно, позволяя Hyper-Threading развернуться. Кроме того, практически каждый пользователь сегодня запускает в фоне антивирусную программу и/или межсетевой экран. Пока число фоновых служб или уровень их активности не достигнут определённого порога, любой процессор без HT сможет справиться с ними без какого-либо замедления. Но по мере роста активности, которую система выполняет в данный момент времени, технология Hyper-Threading будет становиться всё важнее. То же самое относится и к новым двуядерным процессорам. Так что давайте вернёмся к теме нашей статьи.

Удовлетворят ли два ядра потребности в производительности?

Если вы обдумаете сказанное выше, то зададитесь вопросом: разве требования к производительности CPU сегодня опережают возможности? Конечно, если не принимать во внимание некоторые приложения типа кодирования аудио и видео, 3D-рендеринг, профессиональную обработку фотографий, звука и видео и т.д.

Посмотрите на систему двухлетней давности с Pentium 4 на частоте 2,8 ГГц. Разве сегодня можно найти настольное приложение, которое не запустится на этой машине из-за нехватки производительности? Насколько быстрее будет новая машина Pentium 4 с памятью DDR2 и шиной следующего поколения PCI Express? Конечно, такой компьютер позволит его владельцу ощущать себя на вершине технологий, но вряд ли он будет лучше справляться с ежедневными задачами в MS Office, Photoshop, Firefox, Skype и Miranda. Будучи безумно хорошей, новая технология не позволит уходить с работы раньше.

Теперь давайте взглянем с точки зрения геймера. Обновите графическую карту двухлетней давности моделью за $250, и вы обнаружите, что последние 3D-игры вполне нормально запускаются с разрешением 1280x1024 в 32-битном цвете (как мы полагаем, вы уже купили ЖК-дисплей, на котором лучше использовать "родное" разрешение). Похоже, что графическая карта была "узким местом" старой машины?

Подобные рассуждения ставят под вопрос и "разгон" системы. Изначально оверклокеры пытались улучшить производительность менее дорогого "железа", чтобы оно соответствовало уровню дорогих комплектующих. Целью оверклокеров была безупречная работа последнего "софта" без чрезмерных трат на "железо". Но если "разгон" по-прежнему является эффективным способом выжать дополнительную производительность бесплатно, то "железо" с достаточной для большинства задач производительностью сегодня стоит уже не так дорого. Более того, программы, которые являются движущей силой для создания более скоростного "железа", а именно игры, сегодня ограничиваются больше графической подсистемой, нежели CPU.

Мы слышим ворчание оверклокеров и энтузиастов по этому поводу, но следует понимать, что эта группа пользователей относительно невелика. Кроме того, они-то уж точно знают, на что потратить дополнительную производительность своего компьютера. Все остальные рано или поздно спросят: "А зачем мне всё это нужно?". Что ж, несмотря на указанные выше доводы, существуют хорошие перспективы развития, когда новые технологии смогут изменить способ использования компьютеров.



Источник: AMD.

Чтобы правильно оценивать двуядерные процессоры, мы должны пересмотреть характер использования компьютера. Системы с двумя логическими процессорами прекрасно подходят для выполнения нескольких работ одновременно - и вы это даже не заметите. Представьте себе игру в самый последний 3D-шутер, параллельно с которой будет выполняться кодирование звуковых файлов. Если вы решите добавить ещё одно задание и одновременно архивировать большой файл, то на качестве игры в шутер это никак не отразится. Добавьте к этому четвёртое задание - вы сможете уменьшить общее время выполнения работы, но на отзывчивость системы это особо не повлияет. Ниже, в разделе тестирования, мы покажем несколько примеров.

В среднесрочной перспективе пытайтесь перейти на программное обеспечение, оптимизированное под многопоточность. Все программы, разработанные или оптимизированные с учётом двух- или многопроцессорных машин, продемонстрируют существенный прирост производительности на двуядерном ПК по сравнению с одноядерным.

Будущие приложения станут более интеллектуальными

История с многопроцессорностью напоминает извечную проблему курицы и яйца. Если число систем с несколькими ядрами или процессорами будет велико, то программные разработчики смогут перейти на новые модели использования и приложения без каких-либо проблем. Но пока их число невелико. Почему же маленькая или средняя компания-разработчик должна тратить энергию и деньги на то, чтобы исследовать и использовать потенциал многопроцессорного или многоядерного окружения?

Выше мы уже упомянули несколько служб, которые сегодня очень важны, например антивирусные программы или межсетевой экран. Средний настольный компьютер обычно запускает не меньше, чем 5-10 не-Windows служб. Это, например, утилита графической карты, значки в трее для различных программ, утилита мониторинга, сетевые службы для различных устройств. Каждый значок в правом нижнем углу вашего экрана представляет собой службу, потребляющую память и процессорное время. Учитывая масштаб роста производительности компьютеров, в будущем мы не хотим, чтобы эти службы хоть как-нибудь отражались на скорости работы системы.

Но мы так и не ответили на вопрос: что делать с дополнительными ресурсами двуядерной системы? Что ж, давайте рассмотрим пример. Мы помним, как горячо Intel обсуждала технологию распознавания речи во время появления первого 1-ГГц Pentium III. Тогда эта технология вряд ли была доступной; по крайней мере, я не нашёл, как её включить в Windows XP. А как насчёт того, чтобы управлять вашим компьютером голосом? Ограничить голосовой доступ, чтобы компьютер откликался только на речь хозяина? Или представьте, как вы общаетесь с кем-то в чате, и компьютер автоматически переводит ваш голос в текст, а также читает ответы собеседника. Как насчёт свободы? Ведь вы можете в это время прогуливаться по комнате с Bluetooth-гарнитурой.

Поговорим об играх. Вы когда-нибудь встречали игру, где искусственный интеллект близок по уровню к человеческому? Сомневаюсь. Ведь при этом необходимо проводить более сложные оценки вероятностей, просчитывать сложные стратегии, оценивать риски и т.д.

Будущая версия Windows Longhorn является ещё одним примером использования возможностей компьютера. Операционная система должна интеллектуально выстраивать, организовывать и отображать данные, превосходя возможности иерархической системы. Например, если я получаю электронное письмо или создаю какой-либо документ, я хочу, чтобы система знала о сути информации, которую он содержит - это значительно упростило бы жизнь. Я не хочу тратить ни одной дополнительной секунды на то, чтобы решить, куда мне записывать звуковой файл: в папку с именем исполнителя или названную по стилю музыки.

Как видим, мы движемся в своеобразном направлении. Мы хотим получить более умные компьютеры, чтобы повысить эффективность общения друг с другом. Мы хотим, чтобы компьютеры справлялись с новым цифровым стилем жизни, столь усердно рекламируемым многими компаниями. Кроме того, для многих это уже не просто будущее, а повседневная необходимость. Уделите время и проверьте, сколько MP3-файлов, документов, таблиц, презентаций, фотографий и других объектов хранится на вашем компьютере? Полагаю, это количество сразу же отобьёт у вас желание на какое-либо упорядочивание коллекции. Не пора ли предоставить эту функцию компьютеру? Конечно, если он будет обладать достаточным "разумом".


А вот и он: двуядерный красавец AMD Athlon 64 X2.

С технической точки зрения, Athlon 64 X2 не далеко ушёл от процессора, известного нам под названием Athlon 64. Он основывается на последней 90-нм технологии AMD и содержит улучшения, внесённые в ядра San Diego и Venice, содержащие 1 Мбайт и 512 кбайт кэша L2, соответственно. Кстати, когда вы читаете эту статью, они уже должны появиться на рынке. Кроме того, все упомянутые ядра, включая двуядерный X2, теперь поддерживают SSE3.

Ядра подключены через коммутатор (crossbar), который отвечает за доступ обоих ядер к каналу HyperTransport и контроллеру памяти. AMD упоминает лишь небольшое падение производительности по сравнению с полноценной двухпроцессорной системой, связанное с коммутатором. И наши тесты доказывают, что падение действительно ничтожно.


Три канала HyperTransport актуальны только для Opteron - Athlon 64 X2 поставляется с одним каналом HyperTransport, который соединяет CPU и северный мост.


Socket 939 останется главной опорой AMD до начала 2006 года. Потом его должен сменить сокет M2.


CPU-Z 1.28 пока ещё не знает Athlon 64 X2.

На момент запуска будут доступны четыре различных двуядерных процессора Athlon 64 X2, которые будут основываться на разных 90-нм ядрах. Athlon 64 X2 4200+ и 4600+ будут использовать 512 кбайт кэша L2 на ядро, а частоты составят 2,2 и 2,4 ГГц, соответственно. Процессоры 4400+ и 4800+ будут работать на таких же тактовых частотах, но они будут оснащены 1 Мбайт кэша L2 на ядро.

Тепловой пакет 110 Вт

AMD указывает у двуядерных процессоров Toledo тепловой пакет в 110 Вт. Это чуть больше, чем максимальное тепловыделение Athlon 64 FX-55, но для существующих материнских плат Socket 939, соответствующих спецификациям AMD, это вряд ли составит проблему. Всё, что вам нужно сделать, - обновить версию BIOS, где добавлена поддержка Athlon 64 X2.

Cool & Quiet и защита от вирусов

С момента своего появления линейка AMD64 поддерживает технологию Cool & Quiet и бит NX (non-execute). Технология Cool & Quiet должна также поддерживаться BIOS материнской платы, после чего она позволяет операционной системе динамически снижать тактовую частоту CPU. Cool & Quiet позволяет снизить энергопотребление и тепловыделение процессора при низких нагрузках. Но будьте осторожны, если попытаетесь заняться "разгоном" с включённой Cool & Quiet. Этот механизм автоматически перезапишет все настройки множителя процессора, которые вы указали вручную, возвращая процессор к частоте по умолчанию.

Бит NX помогает предотвратить атаки методом переполнения буфера, которые используют многие вирусы и вредоносные программы. Но для этого вам понадобится Windows XP Service Pack 2.


AMD ясно указала на то, что Athlon 64 FX останется топовым процессором для геймеров и однопоточных приложений. В данном отношении, как мы предполагаем, летом на рынке появится 2,8-ГГц Athlon 64 FX-57. Что касается цены, то Athlon 64 X2 должен находиться где-то между текущими моделями FX и Athlon 64, при этом медленные модели X2 могут оказаться весьма привлекательными.


Процессор Модель Частота Кэш Техпроцесс Ядро
Athlon 64 X2 4800+ 2,4 ГГц 2x 1 Мбайт 90 нм Toledo
Athlon 64 X2 4600+ 2,4 ГГц 2x 512 кбайт 90 нм Manchester
Athlon 64 X2 4400+ 2,2 ГГц 2x 1 Мбайт 90 нм Toledo
Athlon 64 X2 4200+ 2,2 ГГц 2x 512 кбайт 90 нм Manchester
Athlon 64 FX 55 2,6 ГГц 1 Мбайт 130 нм Clawhammer
Athlon 64 4000+ 2,4 ГГц 1 Мбайт 90 нм San Diego
Athlon 64 4000+ 2,4 ГГц 1 Мбайт 130 нм Clawhammer
Athlon 64 3800+ 2,4 ГГц 512 кбайт 90 нм Venice
Athlon 64 3800+ 2,4 ГГц 512 кбайт 130 нм Newcastle
Athlon 64 3500+ 2,2 ГГц 512 кбайт 90 нм Venice
Athlon 64 3500+ 2,2 ГГц 512 кбайт 90 нм Winchester
Athlon 64 3500+ 2,2 ГГц 512 кбайт 130 нм Newcastle
Athlon 64 3200+ 2,0 ГГц 512 кбайт 90 нм Venice
Athlon 64 3200+ 2,0 ГГц 512 кбайт 90 нм Winchester
Athlon 64 3000+ 1,8 ГГц 512 кбайт 90 нм Venice
Athlon 64 3000+ 1,8 ГГц 512 кбайт 90 нм Winchester

В таблице приведены все модели Athlon 64, доступные на сегодняшний день, за исключением двуядерных X2. AMD планирует выпустить их на рынок в июне, причём, официальный анонс ожидается 31 мая - во время проведения выставки Computex в Тайбэе (Тайвань). Впрочем, мы сомневаемся, что X2 появятся в широкой продаже до третьего квартала.

Обратите внимание, что некоторые процессоры базируются на устаревшем 130-нм техпроцессе. Их вряд ли стоит рекомендовать к покупке. Они поддерживают технологию Cool & Quiet и позволяют снижать тактовую частоту до 1 ГГц для экономии энергии и снижения тепловыделения. Но увеличенный размер ядра означает также и то, что они будут потреблять больше энергии, независимо от рабочей тактовой частоты. Кроме того, 90-нм ядра Venice и San Diego поддерживают расширения SSE3 и дают небольшой прирост производительности. В частности, потоковые расширения оказываются весьма полезны в растущем числе профессиональных приложений.

Тестовая система Athlon 64 X2

Для нашего тестирования AMD предоставила полную тестовую платформу. Она базируется на материнской плате Asus A8N-SLI Deluxe с чипсетом nVidia nForce4. На плате уже был предустановлен процессор Athlon 64 X2 4800+, а также пара 512-Мбайт модулей DDR400 с низкой задержкой от Corsair.

Плата A8N-SLI является на сегодня одной из самых привлекательных материнских плат - она поддерживает широкий диапазон процессоров (включая двуядерные модели, конечно же), а также обеспечивает установку двух графических карт PCI Express в режиме SLI, предоставляет два порта гигабитного Ethernet и дополнительный чип Serial ATA II RAID.

Линейку модулей памяти Corsair 3200XL Pro можно назвать довольно интересной, так как она сочетает чипы с самыми низкими задержками и светодиоды активности. Хотя память с задержками CL2,0-2-2-5 сегодня предлагают многие производители, Corsair можно признать хорошим выбором, так как эта компания уже достаточно давно выпускает память для энтузиастов.

Выход на рынок двуядерных процессоров ожидается где-то в конце этого месяца, во время проведения Computex. Если AMD говорит о том, что X2 не будут доступны в достаточных количествах до конца лета, то Intel, скорее всего, сможет выдать на рынок большое число двуядерных процессоров Pentium D. В то же время, чиповому гиганту приходится быть очень терпеливым и ждать, пока на рынок выйдут производители материнских плат со своими решениями 945.

Мы постарались собрать идеальные платформы для процессоров AMD и Intel, поэтому для Socket 775 мы выбрали Asus P5ND2. Эта плата использует чипсет nForce4 Intel Edition, который уже появился на рынке и даёт небольшое преимущество по производительности в сравнении с чипсетами Intel. Это связано с контроллером памяти nVidia, отражающим большой опыт компании в бизнесе 3D-графики. Кроме того, функции двух платформ nForce4 хорошо сравнимы между собой.


Процессор
Одноядерный CPU AMD Athlon 64 4000+ (2,4 ГГц, кэш L2 1 Мбайт)
Intel Pentium 4 Processor 660 (3,6 ГГц, кэш L2 2 Мбайт)
Двуядерные CPU AMD Athlon 64 X2 4800+ (2,4 ГГц, 2x кэш L2 1 Мбайт)
Intel Pentium D Processor 840 (3,2 ГГц, 2x кэш L2 1 Мбайт)
Память
Платформа AMD (DDR400) 2x 512 Мбайт - DDR400 (200 МГц)
Corsair Pro Series CMX512-3200XL (XMS3208 V1.1)
(CL2.0-2-2-5-1T @ 200 МГц)
Платформа Intel (DDR2-667) 2x 512 Мбайт - DDR2-667 (333 МГц)
Corsair CM2X512A-5400UL (XMS5400 V1.2)
(CL3-2-2-8-1T @ 333 МГц)
Материнские платы
Платформа AMD Asus A8N-SLI Deluxe (Rev. 1.02, BIOS 1007)
Чипсет nVidia nForce4 SLI
Платформа Intel Asus P5ND2-SLI (Rev. 1.02, BIOS 0601)
Чипсет nVidia nForce4 Intel Edition SLI
Системное аппаратное обеспечение
Графическая карта (PCIe) nVidia GeForce 6800 GT (эталонная плата)
GPU: NVIDIA GeForce 6800 GT (350 МГц)
Память: 256 Мбайт DDR SDRAM (500 МГц)
Жёсткий диск Western Digital WD740 Raptor
74 Гбайт, кэш 8 Мбайт, 10 000 об/мин
Сеть Встроенный гигабитный контроллер nVidia
DVD-ROM Gigabyte GO-D1600C (16x)
Блок питания Tagan TG480-U01, ATX 2.0, 480 Вт
Программное обеспечение
Драйверы чипсета nVidia Forceware 6.53
Драйвер процессора AMD CPU Driver 1.1.0.18
Графический драйвер nVidia Forceware 71.84
DirectX Version: 9.0c (4.09.0000.0904)
OS Windows XP Professional 5.10.2600,
Service Pack 2

Тесты и настройки

Тесты и настройки
OpenGL
Doom III Version: 1.0.1262
1280x1024, 32 Bit
Video Quality = High Quality
demo1
Graphics detail = High Quality
Wolfenstein
Enemy Territory
Version: 2.56 (Patch V 1.02)
1280x1024, 32 Bit
timedemo 1 / demo demo4
Geometric detail = high
Texture detail = high
DirectX 8
Unreal Tournament 2004 Version: 3204
1280x1024, 32 Bit, Audio = off
THG8-assault-single
3DMark2003 Version 3.6.0
1024x786, 32 Bit
DirectX 9
FarCry Version 1.1 Build 1256
1280x1024 - 32 Bit
qualtity options = High
3DMark 2005 Version 1.0
1024x786, 32 Bit
Graphics and CPU Default Benchmark
Видео
Pinnacle Studio 9 Plus Version: 9.4.1
from: 352x288 MPEG-2 41 MB
to: 720x576 MPEG-2 95 MB
Encoding and Transition Rendering to MPEG-2/DVD
no Audio
Auto Gordian Knot
DivX 5.2.1
XviD 1.0.3
Version: 1.95
Audio = AC3 6ch
Custom size = 100 MB
Resulution settings = Fixed width
Codec = XviD and DivX 5
Audio = CBR MP3, kbps 192
182 MB VOB MPEG2-source
Windows Media Encoder Version: 9.00.00.2980
720x480 DV to WMV
320x240 (29.97 fps)
282 kBps streaming
Аудио
Lame MP3 Version 3.97.1 Multi-threaded Alpha
Wave 17:14 minutes (182 MB) to mp3
32 - 320 kbit
VBR = level 3
Приложения
WinRAR Version 3.40
283 MB, 246 Files
Compression = Best
Dictionary = 4096 kB
Characters "Dragon_Charater_rig"
1600x1200
Rendering Single
Синтетические
PCMark 2004 Pro Version: 1.3.0
CPU and Memory Tests
SiSoftware Sandra Pro Version 2005, SR1
CPU Test = Multimedia Benchmark
Memory Test = Bandwidth Benchmark
ScienceMark Version 2.0
All Tests


Однопоточные приложения типа Prime95 могут нагрузить CPU, максимум, на 50%.

Чтобы оценить производительность в многозадачной среде мы провели два различных прогона. Во время первого мы запустили Doom 3, в то время как в фоне с помощью многопоточной версии Lame 3.97.1 кодировали большой аудио-файл в формат MP3. Во втором прогоне мы добавили сжатие 1,2-Гбайт файла с помощью WinRAR 3.4, чтобы ещё больше увеличить нагрузку.

Так как Doom 3 является однопоточной 3D-игрой, то планировщику Windows не особо сложно выдавать высокую частоту кадров, если одно ядро будет заниматься Doom 3. Чтобы создать более высокую нагрузку, во втором тесте мы перешли с Doom 3 на приложение, которое поддерживает многопоточность и способно более эффективно использовать два ядра. Мы выбрали 3DS Max 7 и повторили тесты с одним Lame 3.97, или с парой Lame и WinRAR 3.4.

Мы также постарались поработать с различными фоновыми службами типа антивирусной программы. Но к концу дня мы обнаружили, что имеет смысл показать только плохую отзывчивость одноядерных систем. Любая двуядерная система, в той или иной степени, с лёгкостью справляется с дополнительной нагрузкой.



Вот что мы запустили в фоне до старта основных приложений, Doom 3 или 3DS Max 7. С однопоточным приложением (WinRAR) и многопоточной программой (Lame 3.97.1) система и так уже немало загружена.


В диспетчере задач можно менять приоритет процессов. Полезно для работы некоторых задач в фоне.

Хватит сумасшедших fps

Если в обычных тестах процессоров или материнских плат мы понижаем разрешение и уровень детализации, чтобы графическая карта не стала "узким местом", то здесь мы решили отказаться от этой практики. Вряд ли кто-нибудь будет покупать high-end систему (с одним или двумя ядрами и 1-2 Гбайт памяти) и при этом решит оснащать её дешёвой графической картой стоимостью меньше $200. Сомневаемся, что такие пользователи будут довольны низким качеством графики.

Даже 3D-карты среднего ценового уровня сегодня обеспечивают приличные частоты и хорошее визуальное качество. Именно поэтому мы решили выбрать разрешение 1280x1024 на 32 битах с высокими настройками качества. Разрешение было выбрано с учётом того, что оно является "родным" на большинстве 17-19" ЖК-дисплеев.

В результате вы обнаружите лишь небольшую разницу в некоторых тестах типа Doom 3 и Unreal Tournament 2004. Возникает вопрос: столь ли она важна? Результаты всех систем достаточны для безупречной игры. Кроме того, они показывают, что графическая карта для хорошей 3D-производительности сегодня важнее.

Как видим, линейка Athlon 64 расходует энергию более экономно. Кроме того, чипсет nForce4 SLI построен на одном чипе, в то время как nForce4 Intel Edition использует традиционный дизайн с северным и южным мостами. Кроме того, системы Intel Pentium 4 и Pentium D потребляют немало энергии в режиме простоя - больше, чем Athlon 64 или Athlon 64 X2 при максимальной нагрузке.

Результаты не включают энергопотребление графической карты. В случае GeForce 6800 GT при запуске 3DMark 2005 следует добавить около 45 Вт. Если же две такие карты поставить в режим SLI, то добавлять придётся уже не меньше 100 Вт!

Заключение

Сразу же стоит отметить, что ни Athlon 64 X2, ни Pentium D не выйдут на рынок раньше лета. Хотя Intel уже выпустила двуядерный Pentium Extreme Edition, он встречается очень редко. Так что до официального выхода платформы 945 и процессора Pentium D два ядра вряд ли станут массовыми на рынке. AMD объявила о планах начала отгрузки процессоров X2 основным OEM-клиентам в конце лета, поэтому вряд ли стоит ожидать широкой доступности этих процессоров до конца третьего квартала.

Intel и AMD позволили нашему сайту протестировать грядущие технологические новинки ещё до момента официального выхода. После оценки обеих двуядерных технологий, результаты оказались весьма разочаровывающими - для Intel.

Что касается производительности, то здесь следует добавить несколько комментариев. Если приложение получает прирост от двух ядер (см. тесты), то в большинстве случаев Athlon 64 X2 обгоняет Pentium D 840. Кроме того, этот процессор ничуть не медленнее одноядерного аналога Athlon 64 4000+. Обратите внимание, что мы использовали процессор со старым ядром Clawhammer, что объясняет некоторые различия в производительности X2. Последнее ядро San Diego должно работать на том же уровне, что и X2.

Если посмотреть на линейку Intel, то двуядерные Pentium D останавливаются на частоте 3,2 ГГц, в то время как одноядерные варианты могут похвастаться частотой до 3,8 ГГц (Pentium 4 570). В итоге, если вы решите перейти на новую систему в ближайшем будущем, двуядерные процессоры Intel будут чуть медленнее в однопоточном окружении.

Давайте посмотрим на платформы. Любой из грядущих двуядерных процессоров Athlon 64 X2 может работать на стандартных материнских платах Socket 939 (AGP и PCI Express), если производитель платы выпустит обновлённую версию BIOS. Вряд ли стоит лишний раз упоминать, что X2 является прекрасным чипом для модернизации. Что же касается Intel, то вам придётся купить материнскую плату на nForce4 Intel Edition, 955X или 945 (ещё не вышел) по причине мелких изменений в раскладке разъёма. Обидно видеть, как текущая стабильная платформа 915P не сможет поддерживать двуядерные Pentium D. Хотя те же материнские платы на nVidia nForce3 или VIA K8T800 Pro можно обновить до двух ядер - и они прослужат ещё не меньше года.

Отставание в производительности со стороны Intel вполне можно принести в жертву многозадачному окружению, так что вряд ли у Pentium D возникнут проблемы в распространении на рынке. Однако есть одно большое "но": система Pentium D будет "проедать" не меньше 200 Вт сразу же после включения, даже если вы ничего не будете на ней делать. При максимальной нагрузке энергопотребление достигает 310 Вт и превышает 350 Вт, если добавить графическую карту. У AMD ситуация намного лучше: система будет потреблять от 125 до 190 Вт (235 Вт с видеокартой) в зависимости от нагрузки. И это без включения Cool & Quiet.

Собираем системник из говна и палок по минимальному бюджету.
Планируемая нагрузка - комфортный сёрфинг в сети, видео 720p, 2D игры (или 3D из прошлого десятилетия). Эпизод первый - центральный процессор.
Выбор сокета процессора был обусловлен наличием , которую мне удалось приобрести в офф-лайне по сходной цене. И хотя предполагаемая нагрузка на ПК по современным меркам более чем скромная, но подсознательно хотелось получить хоть какую-нибудь производительность. Тем более если учитывать мизерный . Поэтому я и остановил свой выбор на данном лоте - два ядра по 2,6 ГГц как нельзя лучше подходили для решения поставленных задач. Особенно с оглядкой на ценник.
Доставка заняла полтора месяца; по видимому сказались новогодние праздники. Но трек отслеживался и никаких беспокойств не было.
По упаковке претензий нет, всё надёжно и крепко. Содержимое посылки не пострадало.


Если откинуть всё лишнее, то непосредственно сам процессор поставляется в пластиковом блистере, что по видимому и сохраняет в целости его ноги)
Так же в комплекте присутствует пакетик смегмы каменного тролля тепмопасты. Что ж, приятный бонус. За неимением лучшего процессор хотя бы готов к работе «из коробки».


Мелко-царапки на корпусе

На первый взгляд всё ОК.


Хотя, если поиграть солнечным зайчиком, то мелко- царапинки всё-же найти можно. Ничего удивительного. Процессор-то бу-шный.


Ноги тоже в порядке, кардабалет ровный.



Протираем спиртом и устанавливаем на место


Не забываем про термоинтерфейс и запускаем систему. Материнская плата корректно распознаёт установленный процессор. Никаких обновлений BIOS не требуется. Ещё бы, ведь комплектующие родом из одной эпохи. Да они вообще как старые друзья встретились. (Полосы на мониторе - это косяк монитора. К обозреваемому процессору никакого отношения не имеют)


CPU-Z показал по этому поводу приблизительно следующее


А CPU-Z тесты:
в одно лицо - 227 попугаев
на двоих - 431


Стресс-тест разогревает процессор аж 60-65°C. Да уж, вообще не холодный. Однако здесь стоит учесть, что «сердцем» системы охлаждения является самый простой алюминиевый радиатор. Для лёгких вычислительных задач этого хватает. Но я нормально отдаю себе отчёт, что это работа на пределе возможностей СО и этот узел требует скорейшего апгрейда.


Бенчмарк PerformanceTest с точки зрения производительности центрального процессора оценил мой выбор в 941 попугай. И почему-то сравнил с производительностью шести топовых процессоров. Видимо намекая на то, что апгрейда требует не только система охлаждения).


Ну а бенчмарк встроенный в операционную систему Windows центральному процессору дал оценку в 5,9 балла из 9,9 возможных.

Если оценить общефункциональную производительность ПК, то с моими скромными задачами эта сборка справляется без тормозов и лагов. (Однако стоит упомянуть, что в качестве системного диска установлен SSD, хоть и sata 2… но на быстродействии и производительности это точно сказывается позитивно).

Сложно сделать однозначный вывод по ситуации, ведь железо морально старое, однако ещё трудоспособное. И для кого-то подобный процессор будет спасением, а для кого-то - брелоком.

Теперь прощаюсь Быть добру!

Планирую купить +30 Добавить в избранное Обзор понравился +60 +101