Что такое осмотический потенциал растений. Контрольная работа контрольная по ботанике Осмотическими свойствами обладают

Что такое осмотический потенциал растений и от каких условий произрастания он зависит? рассматривалось в предыдущей статье.

Осмотические свойства клетки

Осмотические свойства клетки не являются чем-то постоянным и зависят от многих факторов. Осмотический потенциал клеточного сока тесно связан с жизнедеятельностью клетки, ее обменом веществ. Превращение веществ в клетке приводит к изменению величины осмотического потенциала: при осахаривании крахмала потенциал возрастает и, наоборот, при превращении - уменьшается. Накопление органических кислот, (подробнее: ), также повышает осмотический потенциал.

Величина осмотического потенциала

Величина осмотического потенциала зависит от условий выращивания растений:
  • у водных растений, растущих в пресной воде, осмотический потенциал равняется 1-3 атм,
  • у наземных растений влажных мест - 5-10 атм.
  • у растений засушливых мест он достигает 30 атм и более,
  • особенно велик осмотический потенциал растений на засоленных почвах. В этом случае он составляет 100 атм и выше, что объясняется накоплением в клеточном соке большого количества солей, главным образом хлористого натрия.

Растения засушливых мест. Следовательно, величина осмотического потенциала является показателем приспособления растений к внешним условиям . Осмотический потенциал в клетках растений обычно полностью не реализован и создает только возможность сосания воды из почвенного раствора, имеющего концентрацию, близкую к концентрации клеточного сока. Протоплазма клеток испытывает только разницу в давлении клеточного сока и почвенного раствора.

Зависимость осмотического потенциала от минерального питания

На осмотический потенциал влияют также и условия минерального питания . При внесении большого количества элементов минерального питания в почву осмотический потенциал возрастает. Однако не все элементы минерального питания его повышают. Большое количество азота в клетке приводит к синтезу белка с использованием сахаров, в результате концентрация их в клетке уменьшается и осмотический потенциал снижается. При внесении калия, большая часть которого находится в растении в свободном состоянии, осмотический потенциал увеличивается.

Зависимость осмотического потенциала от вида растений

Осмотический потенциал зависит также и от вида растения . У некоторых растений пустыни высокий осмотический потенциал сохраняется даже при выращивании их в условиях избыточного увлажнения (ковыль, полынь).

Зависимость осмотического потенциала от почвы

У растений, произрастающих на засоленных почвах (галофитов), с изменением условий выращивания изменяется и осмотический потенциал .

Зависимость осмотического потенциала от возраста растений

С возрастом растений осмотический потенциал уменьшается; в клетках молодых листьев он обычно значительно выше, чем в клетках старых. Различная величина осмотического потенциала может наблюдаться также в клетках одной и той же ткани.

Значение осмотического потенциала растений

Осмотический потенциал имеет большое значение в жизни растений : благодаря ему осуществляется поступление воды в клетку, он способствует созданию тургора, который поддерживает листья растений в состоянии напряжения.
Красивые растения. При недостатке воды в растении благодаря осмотическому потенциалу оставшаяся вода удерживается с большой силой, что также предохраняет растение от завядания. Осмотический потенциал растений играет большую роль и при передвижении воды по живым

URL

Натрия сульфат

Магния сульфат .

Соль карловарская

Лактулеза (дуфалак, портал ак

Клиническая фармакология и фармакотерапия

Белоусов Ю.Б., Моисеев В.С., Лепахин В.К.

URL
Книга "Клиническая фармакология и фармакотерапия" - Глава 18 ЛЕКАРСТВЕННЫЕ СРЕДСТВА, ПРИМЕНЯЕМЫЕ ПРИ ЗАБОЛЕВАНИЯХ СИСТЕМЫ ПИЩЕВАРЕНИЯ - 18.5 ЗАПОР - 18.5.4 Средства, обладающие осмотическими свойствами

Средства, обладающие осмотическими свойствами

При приеме внутрь эти препараты не всасываются. Они обладают осмотическими свойствами и удерживают большое количество воды в просвете кишечника, увеличивая объем его содержимого, что приводит к механическому стимулированию функции кишечника, повышению его моторной активности и ускоренной эвакуации. Препараты этой группы действуют как в тонкой, так и в толстой кишке и вызывают водную диарею через 3-6 ч после приема.

Натрия сульфат (глауберова соль). Применяется в виде порошка. Назначают 15-30 г на прием на 1/4 стакана воды. Запивают 1 стаканом воды.

Магния сульфат . Применяется в виде порошка. Дозы такие же, как и для сульфата натрия.

Соль карловарская содержит натрия сульфата 22 части, натрия гидрокарбоната 18 частей, натрия хлорид а 9 частей, калия сульфата 1 часть. Назначают по 1 столовой ложке нато щак в 1/2 стакана воды.

Лактулеза (дуфалак, портал ак , нормазе ). Представляет собой синтетический неадсорбируемый дисахарид, действующий благодаря осмотическому градиенту. В кишечнике превращается в молочную кислоту, которая связывает аммоний, в связи с чем лактулезу применяют при печеночной недостаточности. Назначают в виде 50% сиропа в суточной дозе 60-150 мл.

Электролиты – вещества, молекулы которых распадаются в водных растворах и расплавах с образованием заряженных частиц –ионов. К электролитам относятся все соли, щелочи, растворимые кислоты. Реальные растворы электролитов, в отличие от растворов неэлектролитов, по своим свойствам отличаются от идеальных. Так для растворов электролитов экспериментально найденные значения коллигативных характеристик всегда больше, чем рассчитанные по законам Вант-Гоффа и Рауля. Т.е., растворы электролитов на практике ведут себя так, как будто они содержат больше частиц растворенного вещества, чем это следует из их аналитической концентрации. Исходя из этого, Вант-Гофф предложил для растворов электролитов при теоретическом расчете Росм., tкип., Δtзам., использовать поправочный коэффициент i, который получил название коэффициента Вант-Гоффа или изотонического коэффициента :

Росм. = iCRT; Δtкип. = iEm; Δtзам. = iKm;

где С – молярная концентрация растворенного вещества, m- моляльная концентрация растворенного вещества, Е и К – соотвественно, эбулиоскопическая и криоскопическая константы.

Изотонический коэффициент показывает, во сколько раз реальное число частиц растворенного вещества больше чем теоретически ожидаемое (если предполагать, что вещество в растворе присутствует только в виде молекул).

Для идеальных растворов электролитов i >1.

Изотонический коэффициент показывает также, во сколько раз наблюдаемое опытное значение Росм., Δtкип., Δtзам., больше теоретически вычисленного. Причину отклонения растворов электролитов от законов Рауля и Вант-Гоффа впервые объяснил шведский ученый С. Аррениус. Он показал, что электролиты за счет действия молекул растворителя распадаются на ионы. Этот процесс приводит к увеличению реального числа частиц растворенного вещества.

Максимально значение изотонического коэффициента (i max) для любого электролита будет при этом равно числу ионов, которые образуются при полной диссоциации его молекулы (или формульной единицы), т.к. именно во столько раз возрастет число частиц электролита в растворе.

Так, для NaCl i max = 2, для Na 3 PO 4 i max = 4.

В реальных растворах диссоциация часто протекает не полностью, особенно если электролит является слабым. Кроме того, наблюдаются межионные взаимодействия, приводящие к уменьшению числа кинетически активных частиц. В этом случае величина i будет меньше его возможного максимального значения и будет зависеть от степени диссоциации электролита:

i = 1 + α (m - 1)

где α - степень диссоциации электролита (в долях единицы); m - число ионов, образующихся при полном распаде одной молекулы или одной формульной единицы электролита.

Таким образом, из двух растворов однотипных электролитов (т.е. распадающихся на одно и то же число ионов) с одинаковой молярной (моляльной) концентрацией изотонический коэффициент будет больше в растворе электролита с более высокой степенью диссоциации α. Соответственно и росм., Δtкип., Δtзам. для такого раствора тоже будут иметь большие значения. Если же молярная концентрация и степень диссоциации электролитов разного типа в растворе одинаковые, то значение i будет выше для электролита, диссоциирующего на большее число ионов m.

5. Гипо-, гипер-, изотонические растворы. Понятие об изоосмии (электролитном гомеостазе). Осмоляльность и осмолярность биологических жидкостей.

Растворы, осмотическое давление которых равно осмотическому давлению раствора принятого за стандарт, называются изотоническими . В медицине осмотическое давление растворов сравнивают с осмотическим давлением крови. Изотоническими по отношению к крови являются 0,9% (0,15 М) раствор NaCl и 4,5-5% раствор глюкозы. В этих растворах концентрация частиц растворенного вещества такая же, как и в плазме крови. Растворы, обладающие более высоким осмотическим давлением, чем плазма крови, называются гипертоническими , а растворы, имеющие более низкое давление - гипотоническими . При различных лечебных процедурах в кровь человека в больших количествах следует вводить только изотонические растворы, чтобы не вызвать осмотический конфликт из-за резкого несоответствия между осмотическим давлением биологической жидкости и вводимого раствора.

Кровь, лимфа, тканевые жидкости человека представляют собой водные растворы молекул и ионов многих веществ и обладают вследствие этого определенным осмотическим давлением. Причем на протяжении всей жизни организма биологические жидкости сохраняют свое давление на постоянном уровне независимо от состояния внешней среды. Это явление называется иначе изоосмией человеческого организма и является составной частью более общего процесса - гомеостаза или постоянства ряда физико-химических показателей внутренней среды человека в изменяющихся внешних условиях. Изоосмия особенно присуща таким биологическим жидкостям как кровь и лимфа. Так осмотическое давление крови у человека практически постоянно и при 37 о С изменяется в пределах 740-780 кПа (т.е., почти в 8 раз больше атмосферного). При изменении осмотического давления крови организм стремится восстановить его, удалив из крови избыточное количество растворенных частиц (если давление повышается) или, наоборот, увеличивая число кинетически активных частиц (если давление понижается). Основную роль в регуляции осмотического давления крови играют почки. Изоосмия регулируется, прежде всего, центральной нервной системой и деятельностью желез внутренней секреции.

В состав биологических жидкостей входит целый ряд веществ. Их суммарная концентрация носит название осмолярности (изотонической концентрации) и представляет собой химическое количество всех кинетически активных (т.е., способных к самостоятельному движению) частиц (независимо от их формы, размеров и природы), содержащихся в 1 литре жидкости и не проникающих через полупроницаемую мембрану. Осмолярность выражается в миллиосмолях на литр (мосм/л). В норме показатели осмолярности плазмы крови составляют 280-300 мосм/л, для спинно-мозговой жидкости – 270-290 мосм/л, для мочи – 600-1200 мосм/л. Осмоляльность - концентрация тех же частиц, растворенных в килограмме биологической жидкости, выра­жающаяся в миллиосмолях на килограмм (мосм/кг). В норме общая внутриклеточная осмоляльность зависит главным образом от концентрации ионов К + и ассоциированных с ними анионов и равна осмоляльности внеклеточной жидкости, определяемой ионами Nа + и ассоциированными анионами. Поэтому общее перемещение воды в клетки или из них не происходит. Осмолярное равновесие поддерживается несколькими физиологическими механиз­мами, которые могут нарушаться при критических состояниях: движением воды в сторону повышенной концентрации ионов, почечной экскрецией осмотически активных веществ (мочевина, соли), удалением СО2 через легкие, антидиуретическим гормоном.
6. Роль осмоса в биологических системах. Плазмолиз и цитолиз. Зависимость степени гемолиза эритроцитов от концентрации раствора NaCl.

Причиной возникновения осмотических явлений в организме является то, что все биологические жидкости представляют собой водные растворы электролитов и неэлектролитов, а клеточные мембраны можно рассматривать как полупроницаемые. Осмос играет ведущую роль в распределении воды между внутри- и внеклеточным содержимым, между различными тканями и системами тканей, образующих органы. Оболочка клетки полупроницаема и через нее достаточно свободно проходит вода. Ионы электролитов и молекулы других веществ оболочка пропускает строго избирательно. Снаружи клетки омываются межклеточной жидкостью, тоже представляющей собой водный раствор. Причем концентрация растворенных веществ внутри клеток больше чем в межклеточной жидкости. Вследствие осмоса наблюдается переход растворителя из внешней среды в клетку, что вызывает ее частичное набухание или тургор . При этом клетка приобретает соответствующую упругость и эластичность. Тургор способствует сохранению определенной формы органов у животных организмов, стеблей и листьев у растений.

Если клетка попадает в среду раствора с повышенной концентрацией солей и других растворимых веществ (гипертонический раствор), то это приводит к осмосу, при котором вода диффундирует из клетки в раствор. Если в такой гипертонический раствор попадает клетка, имеющая прочную целлюлозную оболочку, то происходит явление плазмолиза – сжимание протопласта и отделение его от клеточных стенок. В случае животных клеток, имеющих пластичную оболочку (например, эритроцитов), происходит общее сжимание, сморщивание клетки. Ши-роко известно применение больших концентраций солей или сахара для консервирования пищевых продуктов. В этих условиях микроорганизмы подвергаются плазмолизу и становятся нежизнеспособными. Если клетка попадает в среду раствора с пониженной концентрацией веществ (гипотонический раствор), то это приводит к осмосу, при котором вода диффундирует из раствора в клетку, что ведет к ее набуханию. Если разница в концентрациях внутри- и внеклеточной жидкостей достаточно велика и клетка не имеет прочных стенок, происходит разрушение клеточной мембраны с выделением в окружающий раствор ее содержимого – цитолиз . В случае разрушения эритроцитарной мембраны и выхода в окружающую среду содержимого эритроцита явление называется осмотическим шоком (гемолиз ).

Показателем прочности эритроцитов служит их осмотическая стойкость, т.е. способность противостоять понижению осмотического давления. Мерой осмотической стойкости эритроцитов является концентрация NaCl, при которой начинается гемолиз. У человека это происходит в 0,4%-ном растворе NaCl (минимальная осмотическая резистентность), а в 0,34%-ном растворе разрушаются все эритроциты и наступает полный гемолиз крови (максимальная осмотическая резистентность).

Эритроциты в крови каждого индивидуума по критерию осмотической стойкости распределены по закону Гаусса. Поэтому одним из главных параметров, характеризующих осмотические свойства эритроцитов в суспензии, является среднее значение т.н. осмотической хрупкости, численно равное концентрации NaCl, при которой происходит лизис 50% клеток.(рис).

Осмос - это диффузия воды через полупроницаемые мембраны. Осмос вызывает передвижение воды из раствора с высоким водным потенциалом в раствор - с низким водным потенциалом.

В связи с тем что вакуоли содержат крепкие растворы солей и других веществ, клетки растений постоянно осмотически поглощают воду и создают гидростатическое давление на клеточную стенку, называемое тургорным. Тургорному давлению противостоит равное ему по величине давление клеточной стенки, направленное внутрь клетки. Большинство растительных клеток существуют в гипотонической среде. Но если такую клетку поместить в гипертонический раствор, вода по законам осмоса начнет выходить из клетки (для выравнивания водного потенциала по обе стороны мембраны). Вакуоль при этом сократится в объеме, ее давление на протопласт уменьшится, и мембрана начнет отходить от клеточной стенки. Явление отхождения протопласта от клеточной стенки называется плазмолизом. В природных условиях такая потеря тургора в клетках приведет к увяданию растения, опусканию листьев и стеблей. Однако этот процесс обратим: если клетку поместить в воду (например, при поливе растения), возникает явление, обратное плазмолизу - деплазмолиз


Понятие о тканях и органах растения. Классификация растительных тканях.

Орган это часть растения, выполняющая определенные функции и имеющая специфичное строение. Вегетативные органы, к которым относятся корень и побег, составляют тело высших растений; они обеспечивают индивидуальную жизнь особи.

У грибов и низших растений деления тела на органы нет. Их тело представлено системой мицелия или слоевищ.

Образование органов у высших растений в процессе эволюции связано с выходом их на сушу и приспособлением к наземному существованию.

Ткани - это устойчивые, закономерно повторяющиеся комплексы клеток, сходные по происхождению, строению и приспособленные к выполнению одной или нескольких функций.

Согласно выполняемым функциям выделяют 6 типов тканей: образовательные (или меристемы - от греч. meristos - делимый) и постоянные, включающие покровные, основные, механические, проводящие, выделительные ткани.

Ткань называется простой, если все ее клетки одинаковы по форме и функциям (паренхима, склеренхима, колленхима). Сложные ткани (проводящие) состоят из клеток, неодинаковых по форме, внутреннему строению и функциям, но связанных общим происхождением (например, ксилема, образованная камбием).



Существует еще классификация тканей, основанная на их происхождении. По этой классификации ткани подразделяют на первичные и вторичные.

Из первичной меристемы, находящейся на верхушке побега и в кончике корня, а также из зародыша семени формируются первичные постоянные ткани (эпидерма, колленхима, склеренхима, ассимиляционная ткань, эпиблема). Клетки постоянных тканей неспособны к дальнейшему делению. Из клеток специализированной меристемы - прокамбия - формируются первичные проводящие ткани (первичная ксилема, первичная флоэма).

Из клеток вторичной меристемы формируются: из камбия - вторичные ткани (вторичная ксилема, вторичная флоэма), из феллогена - перидерма (пробка, феллодерма), возникающая при утолще- нии стебля и корня. Вторичные ткани, как правило, встречаются у голосеменных и у двудольных покрытосеменных растений. Мощное развитие вторичных тканей (древесины и луба) характерно для древесных растений.

Образовательные ткани

Образовательные ткани благодаря постоянному митотическому делению их клеток обеспечивают образование всех тканей расте- ния, т.е. фактически формируют его тело.

Покровные ткани



Клетки эпидермы плотно сомкнуты между собой, благодаря чему она выполняет ряд функций:

1) препятствует проникновению внутрь растения болезнетворных организмов;

2) защищает внутренние ткани от механических повреждений;

3) осуществляет регуляцию газообмена и транспирации;

4) через нее выделяются вода, соли;

5) может функционировать как всасывающая ткань;

6) принимает участие в синтезе различных веществ, восприятии раздражений, движении листьев.

Основные ткани

Основные ткани составляют большую часть всех органов растений. Они заполняют промежутки между проводящими и механиче- скими тканями и присутствуют во всех вегетативных и генеративных органах. Эти ткани образуются за счет дифференцировки апикальных меристем и состоят из живых паренхиматозных клеток, разнообразных по строению и функциям. Различают ассимиляционную, запасающую, воздухо- и водоносную паренхимы.

В ассимиляционной, или хлорофиллоносной, паренхиме осуществляется фотосинтез. Эта ткань встречается в надземных органах растений (листьях, молодых зеленых стеблях).

Запасающая паренхима преобладает в стебле, корне, корневище. В клетках этой ткани откладываются запасающие вещества - белки, жиры, углеводы.

Воздухоносная паренхима, или аэренхима, состоит из воздухоносных полостей (межклетников), представляющих собой резервуары для запаса газообразных веществ. Эти полости окружены клетками основной паренхимы (хлорофиллоносной или запасающей). Аэренхима хорошо развита у водных растений в различных органах и может встречаться у сухопутных видов; главное ее назначение - участие в газообмене, а также в обеспечении плавучести растений.

Клетки водоносной паренхимы содержат в вакуолях слизистые вещества, способствующие удержанию влаги. Преимущественно эти клетки бывают у суккулентов (кактусы, алоэ, агава).

Механические ткани

Механические ткани - это опорные (арматурные) ткани, образующие скелет растения и обеспечивающие его прочность, вследствие чего растение способно противостоять нагрузкам на растяжение, сжатие и изгиб. Различают механические ткани с равномерно и неравномерно утолщенными клеточными стенками.

Проводящие ткани

Проводящие ткани обеспечивают восходящий и нисходящий ток растения. Восходящий ток - это ток минеральных солей, растворенных в воде, идущих от корней по стеблю к листьям. Восходящий ток осуществляется по сосудам и трахеидам ксилемы (древесины). Нисходящий ток - это ток органических веществ, направляющийся от листьев к корням по ситовидным элементам флоэмы (луба).

Проводящие элементы ксилемы. Наиболее древними проводящими элементами ксилемы являются трахеиды - это вытянутые клетки с заостренными концами. Трахеиды имеют одревесневшую клеточную стенку. По характеру утолщения оболочек, размерам и расположению в них участков первичных оболочек различают 4 типа трахеид: кольчатые, спиральные, пористые и лестничные.

Проводящие элементы флоэмы у архегониальных растений, кроме мхов, представлены си- товидными клетками. На их продольных стенках имеются сквозные отверстия, напоминающие сито, а потому называемые ситовидными полями. У покрытосеменных растений в процессе эволюции сформировался 2-й тип проводящих элементов - ситовидные трубки, представляющие собой продольный тяж клеток, называемых члениками.

Сосудисто-волокнистые пучки. Флоэма и ксилема образуют сосудисто-волокнистые пучки, которые располагаются в центральном осевом цилиндре и бывают открытыми и закрытыми.

Закрытые пучки состоят из ксилемы и флоэмы, между которыми отсутствует камбий и, таким образом, не происходит образования новых элементов флоэмы и ксилемы. Закрытые сосудисто-волокнистые пучки встречаются в стеблях и корневищах однодольных растений.

Открытые пучки имеют камбий между флоэмой и ксилемой. В результате деятельности камбия пучок разрастается и происходит утолщение органа. Открытые сосудисто-волокнистые пучки встречаются во всех осевых органах двудольных и голосеменных растений.

Выделительные ткани

Выделительные ткани представлены различными образованиями (чаще многоклеточными, реже одноклеточными), выделяющими из

растения или изолирующими в его тканях продукты обмена веществ либо воду. У растений различают выделительные ткани внутренней и наружной секреции.

Растительная клетка отличается от животной главным образом строением клеточной оболочки, наличием хлоропласт, обеспечивающих фотосинтез и вакуолей, заполненных клеточным соком (рис. 2-13).

Клеточная оболочка состоит из двух слоёв. Внутренний слой прилегает к цитоплазме и называется цитоплазматической или плазматической мембраной, над которой формируется наружный толстый слой из целлюлозы, который называется клеточной стенкой. Клеточная оболочка легко проницаема для жидкостей и газов, и пронизана тончайшими канальцами (плазмодесмами), соединяющими соседние клетки.

o Плазмодесмы - поры, через которые осуществляется обмен веществами между соседними клетками и организация клеток в единое целое. Аналог щелевых межклеточных контактов между животными клетками.

Пластиды (хлоропласты) - двухмембранные образования, имеющие собственную ДНК; предположительно возникли из цианобактерий в результате слияния с растительной клеткой. Обеспечивают фотосинтез АТФ и органических соединений при участии энергии солнца.

Вакуоль - одномембранная мешкообразная структура, заполненная клеточным соком, принимает участие в поддержании осмотического гомеостаза и формы клетки. Вакуоли развиваются из цистерн эндоплазматической сети. Мембрана, в которую заключена вакуоль, называется тонопласт. В молодой растительной клетке клеточный сок накапливается в мелких вакуолях, во взрослой клетке вакуоли сливаются, ядро и другие органеллы перемещаются на периферию, а вакуоль занимает почти весь объём клетки. В состав клеточного сока входит вода, в которой растворены органические кислоты (щавелевая, яблочная, лимонная и др.), сахара (глюкоза, сахароза, фруктоза), минеральные соли (азотнокислый кальций, сернокислый магний, кислый фосфорнокислый калий, соли железа). Одна из важных функций вакуолей - накопление ионов и поддержание тургора (тургорного давления).

Рис. 2-13. Строение растительной клетки. 1 - комплекс Гольджи; 2 - свободно расположенные рибосомы; 3 - хлоропласты; 4 - межклеточные пространства; 5 - полирибосомы (несколько связанных между собой рибосом); 6 - митохондрии; 7 - лизосомы; 8 - гранулярная эндоплазматическая сеть; 9 - гладкая эндоплазматическая сеть; 10 - микротрубочки; 11 - плазмодесмы; 12 - клеточная мембрана; 13 - ядрышко; 14 - ядерная оболочка; 15 - поры в ядерной оболочке; 16 - целлюлозная оболочка; 17 - гиалоплазма; 18 - тонопласт; 19 - вакуоль; 20 - ядро.

2. Осмотические свойства растительной клетки

1. Фрагменты листьев водного растения валлиснерии расположить на предметном стекле и нанести несколько капель дистиллированной воды, так чтобы листья валлиснерии оставались в водной среде. Объект накрыть покровным стеклом и изучить под микроскопом тургорное состояние клеток. При большом увеличении микроскопа видны прямоугольные клетки, имеющие бесцветную двуконтурную оболочку и прилегающую к ней протоплазму с зелёными хлоропластами (рис. 2-14).

2. Воду, в которой находятся клетки растения, заменить гипертоническим раствором (8% хлористый натрий). Для этого с помощью фильтровальной бумаги впитать воду из-под покровного стекла. Затем под покровное стекло с помощью пипетки накапать гипертонического раствора. В гипертоническом растворе клетки теряют воду и переходят из тургорного состояния в состояние плазмолиза. На препарате видны клетки, у которых в результате потери воды из вакуолей протоплазма с хлоропластами отделяется от клеточной оболочки. Содержимое клетки сжимается.

3. Далее следует вновь заменить вышеуказанным способом гипертонический раствор на дистиллированную воду. При замене раствора клетки насыщаются водой и возвращаются к прежнему тургорному состоянию, которое после плазмолиза называется деплазмолизом.

Рис. 2-14. Движение воды через клеточную оболочку растительной клетки. А - тургор; Б -

плазмолиз; В - деплазмолиз.